精英家教网 > 高中数学 > 题目详情

【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:①;②函数是偶函数;③任取一个不为零的有理数对任意的恒成立;④存在三个点,使得为等边三角形.其中真命题的个数有(

A.1B.2C.3D.4

【答案】D

【解析】

根据所给的定义,运用分类讨论的方法、取特殊值法进行逐一判断即可.

①∵当为有理数时,;当为无理数时,

∴当为有理数时,

为无理数时,

即不管是有理数还是无理数,均有,故①正确;

②∵有理数的相反数还是有理数,无理数的相反数还是无理数,

∴对任意,都有,故②正确;

③若是有理数,则也是有理数; 是无理数,则也是无理数,

∴根据函数的表达式,任取一个不为零的有理数恒成立,故③正确;

④取,可得

,恰好为等边三角形,故④正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求单调区间;

(2)设,证明:上有最小值;设上的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在侧棱垂直底面的四棱柱中,.,分别是的中点的交点.

(I) 求线段的长度;

(II)证明:平面

(III)与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且满足,数列中,,对任意正整数.

1)求数列的通项公式;

2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比q的值,若不存在,请说明理由;

3)求数列n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,已知

1)若函数,求的值;

2)当时,求证:函数上是单调递增函数;

3)若对于一切,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,求

(1)过点A,B且周长最小的圆的方程;

(2)过点A,B且圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,向量 ,经过点,以为方向向量的直线与经过点,以为方向向量的直线交于点,其中

)求点的轨迹方程,并指出轨迹

)若点,当时, 为轨迹上任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为等边三角形,分别为的中点,的中点,,将沿折起到的位置,使得平面平面

的中点,如图2

1)求证:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的短轴为直径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆过右焦点的弦为、过原点的弦为,若,求证:为定值.

查看答案和解析>>

同步练习册答案