精英家教网 > 高中数学 > 题目详情

【题目】已知圆

(1)求圆关于直线对称的圆的标准方程;

(2)过点的直线被圆截得的弦长为8,求直线的方程;

(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.

【答案】(1);(2);(3)

【解析】

(1)设,根据圆心关于直线对称,列出方程组,求得的值,即可求解;

(2)由圆的弦长公式,求得,根据斜率分类讨论,求得直线的斜率,即可求解;

(3)由直线,得直线过定点,根据时,弦长最短,即可求解.

(1)由题意,圆的圆心,半径为

,因为圆心关于直线对称,

所以,解得,则,半径

所以圆标准方程为:

(2)设点到直线距离为,圆的弦长公式,得,解得

①当斜率不存在时,直线方程为,满足题意

②当斜率存在时,设直线方程为,则,解得

所以直线的方程为

综上,直线方程为

(3)由直线,可化为,可得直线过定点,

时,弦长最短,又由,可得

此时最短弦长为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):

厨余垃圾

可回收物

其他垃圾

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(1)试估计厨余垃圾投放正确的概率P

(2)试估计生活垃圾投放错误的概率;

(3)假设厨余垃圾在厨余垃圾箱,可回收物箱,其他垃圾箱的投放量分别为abc,其中a>0,abc=600. 当数据abc的方差s2最大时,写出abc的值(结论不要求证明),并求出此时s2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选派一名学生参加全市实践活动技能竟赛,AB两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm

AB两位同学各加工的10个零件直径的平均数与方差列于下表;

平均数

方差

A

20

0.016

B

20

s2B

根据测试得到的有关数据,试解答下列问题:

(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;

(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆,动点在直线上(),过分别作圆的切线,切点分别为,若满足的点有且只有一个,则实数的值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足a1=1,anan+1=2Sn , 设bn= ,若存在正整数p,q(p<q),使得b1 , bp , bq成等差数列,则p+q=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.

(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

直线 的参数方程为 为参数),以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,直线 与曲线 交于不同的两点.

(1)求实数 的取值范围;

(2)已知 ,设点 ,若 成等比数列,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在直角坐标系xOy中,设倾斜角为α的直线lt为参数)与曲线Cθ为参数)相交于不同的两点AB

)若α,求线段AB中点M的坐标;

)若|PA·PB|=|OP,其中P2),求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年高考成绩揭晓,某高中再创辉煌,考后学校对于单科成绩逐个进行分析:现对甲、乙两个文科班的数学成绩进行分析,规定:大于等于135分为优秀,135分以下为非优秀,成绩统计后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

(1)请完成上面的列联表;

(2)请问:是否有75%的把握认为“数学成绩与所在的班级有关系”?

(3)用分层抽样的方法从甲、乙两个文科班的数学成绩优秀的学生中抽取5名学生进行调研,然后再从这5名学生中随机抽取2名学生进行谈话,求抽到的2名学生中至少有1名乙班学生的概率.

参考公式:(其中

参考数据:

查看答案和解析>>

同步练习册答案