精英家教网 > 高中数学 > 题目详情

【题目】如图,在等腰梯形中, ,四边形为矩形, ,平面平面,点为线段中点.

(Ⅰ)求异面直线所成的角的正切值;

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析】(1)借助异面直线所成角的定义找出角,再运用解三角形的知识求解;(2)依据题设线面垂直\面面垂直的判定定理推证;(3)借助线面角的定义先找出线面角,再运用解直角三角形求解

(Ⅰ)解:取的中点,连接

∵四边形为矩形, 为线段中点,

为异面直线所成的角.

中,

又∵平面 平面

平面

中,

(Ⅱ)证明:在中,

又∵平面平面

平面

在矩形中,∵

又∵

平面

又∵平面

∴平面平面. 

(Ⅲ)过点

由第(Ⅱ)问知平面平面

平面

为直线与平面所成的角.

中,

,∴

∴直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解答
(1)已知全集U={x|﹣5≤x≤10,x∈Z},集合M={x|0≤x≤7,x∈Z},N={x|﹣2≤x<4,x∈Z},求(UN)∩M(分别用描述法和列举法表示结果)
(2)已知全集U=A∪B={0,1,2,3,4,5,6,7,8,9,10},若集合A∩UB={2,4,6,8},求集合B;
(3)已知集合P={x|ax2+2ax+1=0,a∈R,x∈R},当集合P只有一个元素时,求实数a的值,并求出这个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中, ,分别为的中点.

1)求证: 平面

2)求三棱锥的体积(锥体的体积公式,其中为底面面积, 为高)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.

(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);

(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)()如下表所示:

售价

33

35

37

39

41

43

45

47

销量

840

800

740

695

640

580

525

460

①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;

②根据所选回归模型,分析售价定为多少时?利润可以达到最大.

49428.74

11512.43

175.26

124650

(附:相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为为坐标原点.

1)求的轨迹方程;

2)当时,求的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆 的圆心.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线 ,当直线 都与圆相切时,求的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的角A、B、C所对的边分别是a、b、c,设向量
(1)若 ,求证:△ABC为等腰三角形;
(2)若 ,边长c=2,角C= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且).

(1)求的通项公式;

(2)设 是数列的前项和,求正整数,使得对任意均有恒成立;

(3)设 是数列的前项和,若对任意均有恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,设角A,B,C的对边分别为a,b,c,向量=(cosA,sinA),=(﹣sinA,cosA),若=1.
(1)求角A的大小;
(2)若b=4 , 且c=a,求△ABC的面积.

查看答案和解析>>

同步练习册答案