试题分析:∵当x∈(-1,1]时,将函数化为方程x
2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912488485.png)
=1(y≥0),
∴图象为半个椭圆,其图象如图所示,
同时在坐标系中作出当x∈(1,3]得图象,再根据周期性作出函数其它部分的图象,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082401091251913996.png)
由图易知直线 y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912535382.png)
与第二个椭圆(x-4)
2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912488485.png)
=1(y≥0)相交,而与第三个半椭圆(x-8)
2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912488485.png)
="1" (y≥0)无公共点时,方程恰有5个实数解,
将 y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912535382.png)
代入(x-4)
2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912488485.png)
=1(y≥0)得,(9m
2+1)x
2-72m
2x+135m
2=0,令t=9m
2(t>0),
则(t+1)x
2-8tx+15t=0,由△=(8t)
2-4×15t (t+1)>0,得t>15,由9m
2>15,且m>0得 m >
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912613477.png)
,
同样将 y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912535382.png)
代入第三个椭圆方程(x-8)
2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912488485.png)
="1" (y≥0),由△<0可计算得 m<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912660306.png)
,
综上可知m∈
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010912441713.png)
,故选B。
点评:中档题,解的思路比较明确,首先数形结合,分析方程存在5个解时,的情况,通过建立方程组,利用判别式受到的限制进一步解题。