精英家教网 > 高中数学 > 题目详情
函数f(x)=ln(x+1)•tanx的图象可能是(  )
A、
B、
C、
D、
考点:函数的图象
专题:函数的性质及应用
分析:根据函数的值域的于0的大小关系,分段讨论即可得到答案
解答: 解:函数f(x)=ln(x+1)•tanx的定义域为x>-1,且x≠kπ+
π
2

当-1<x<0时,
∵ln(x+1)<0,tanx<0,
∴f(x)=ln(x+1)•tanx>0,
当1≤x<
π
2
时,∵ln(x+1)>0,tanx>0,
∴f(x)=ln(x+1)•tanx>0,
π
2
<x<π时,∵ln(x+1)<0,tanx>0,
∴f(x)=ln(x+1)•tanx<0,
综上所述,只有A符合
故选:A
点评:本题考查了函数图象的识别,观察函数的定义域和值域是本题的关键,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A={x|-3≤x≤3},B={y|y=-x2+t},若A∩B=∅,则实数t的取值范围是(  )
A、t<-3B、t≤-3
C、t>3D、t≥3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知凼数f(x)=2cos2x-2sinxcosx+1
(1)求方程f(x)-1=0在x∈(0,π)内的所有解的和;
(2)把凼数y=f(x)的图象向左平移m(m>0)个单位,使所得函数的图象关于点(0,2)对称,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式|2m-1|≤1的整数解有且仅有一个值1.
(1)求整数m的值;
(2)已知a,b,c均为正数,若2a+2b+2c=m,求
a2
b
+
b2
c
+
c2
a
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+y=1和圆:x2+y2-6x+8y-24=0的位置关系是(  )
A、相切B、相交C、相离D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

下面说法正确的是(  )
A、命题“?x∈R,使得x2+x+1≥0”的否定是“?x∈R,使得x2+x+1≥0”
B、实数x>y是x2>y2成立的充要条件
C、设p,q为简单命题,若“p∨q”为假命题,则“¬p∧¬q”也为假命题
D、命题“若cosα≠1,则α≠0”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,D,E分别为BC,BB1的中点,四边形B1BCC1是边长为6的正方形.
(1)求证:A1B∥平面AC1D;
(2)求证:CE⊥平面AC1D;
(3)求平面CAC1与平面AC1D的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:
①垂直于同一平面的所有向量一定共面;
②等差数列{an}中,a1,a3,a4成等比数列,则公比为
1
2

③已知a>0,b>0,a+b=1,则
2
a
+
3
b
的最小值为5+2
6

④在△ABC中,已知
a
cosA
=
b
cosB
=
c
cosC
,则∠A=60°.
正确的序号有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x+
a
x+1
(0≤x≤2),若当x=0时函数值最大,则实数a的取值范围是(  )
A、a≥1B、a≤1
C、a≥3D、a≤3

查看答案和解析>>

同步练习册答案