在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且.
(1)求点的轨迹的方程;
(2) 若直线斜率为1且过点,其与轨迹交于点,求的值.
科目:高中数学 来源: 题型:解答题
已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,求过点及抛物线与轴两个交点的圆的方程;
(3)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
长方形中,,.以的中点为坐标原点,建立如图所示的直角坐标系.
(1) 求以、为焦点,且过、两点的椭圆的标准方程;
(2) 过点的直线交(1)中椭圆于两点,是否存在直线,使得以线段为直径的圆恰好过坐标原点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,上、下顶点分别为、.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.
(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率,且直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的左、右焦点分别为,离心率,连接椭圆的四个顶点所得四边形的面积为.
(1)求椭圆C的标准方程;
(2)设是直线上的不同两点,若,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com