精英家教网 > 高中数学 > 题目详情
20.如图,在四棱锥A-BECD中,已知底面BECD是平行四边形,且CA=CB=CD=BD=2,AB=AD=$\sqrt{2}$.
(Ⅰ)求证:平面ABD⊥平面BECD;
(Ⅱ)求点E到平面ACD的距离.

分析 (Ⅰ)取AD中点O,连结OC,OA,证明AO⊥平面BECD,即可证明平面ABD⊥平面BECD;
(Ⅱ)利用等体积转化,即可求点E到平面ACD的距离.

解答 (Ⅰ)证明:取AD中点O,连结OC,OA.
∵BO=DO,AB=AD,
∴AO⊥BD,∵BO=DO,BC=CD,∴CO⊥BD,

在△AOC中,由已知可得AO=1,CO=$\sqrt{3}$,
而AC=2,∴AO2+CO2=AC2
∴∠AOC=90°,即AO⊥OC.
∵BD∩OC=O,∴AO⊥平面BECD.
又 OA?平面ABD,
所以平面ABD⊥平面BCD;
(Ⅱ)解:设点E到平面ACD的距离为h.∵VE-ACD=VA-CDE,∴$\frac{1}{3}$h•S△ACD=$\frac{1}{3}$•AO•S△CDE
在△ACD中,CA=CD=2,AD=$\sqrt{2}$,∴S△ACD=$\frac{\sqrt{7}}{2}$.
而AO=1,${S_{△CDE}}={S_{△BCD}}=\frac{{\sqrt{3}}}{4}×{2^2}=\sqrt{3}$,∴h=$\frac{AO•S△CDE}{S△ACD}$=$\frac{{\sqrt{3}}}{{\;\frac{{\sqrt{7}}}{2}\;}}=\frac{{2\sqrt{21}}}{7}$.
∴点E到平面ACD的距离为$\frac{{2\sqrt{21}}}{7}$.

点评 本题考查线面垂直,平面与平面垂直的证明,考查点E到平面ACD的距离,正确计算体积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图所示,在边长为1的正方形OABC内任取一点P,用A表示事件“点P恰好自由曲线$y=\sqrt{x}$与直线x=1及x轴所围成的曲边梯形内”,B表示事件“点P恰好取自阴影部分内”,则P(B|A)等于(  )
A.$\frac{1}{4}$B.$\frac{1}{5}$C.$\frac{1}{6}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.重庆好食寨鱼火锅底料厂用辣椒、花椒等原材料由甲车间加工水煮鱼火锅底料,由乙车间加工麻辣鱼火锅底料.甲车间加工1吨原材料需耗费工时10小时,可加工出14箱水煮鱼火锅底料,每箱可获利80元;乙车间加工1吨原材料需耗费工时6小时,可加工出8箱麻辣鱼火锅底料,每箱可获利100元.甲、乙两车间每天总获利最大值为6-800元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是定义在R上偶函数,且在区间(-∞,0)上单调递减,则不等式f(x-3)<f(4)的解集为(-1,7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(π-ωx)cosωx+cos2ωx(ω>0)的最小正周期为π.
(1)求ω的值;
(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间[0,$\frac{π}{16}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,已知${A_1}(-\sqrt{2},0)$,${A_2}(\sqrt{2},0)$,P(x,y),M(x,-2),N(x,1),若实数λ使得${λ^2}\overrightarrow{OM}•\overrightarrow{ON}=\overrightarrow{{A_1}P}•\overrightarrow{{A_2}P}$(O为坐标原点),求P点的轨迹方程,并讨论P点的轨迹类型.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知1,x,y,z,9成等比数列,则y=(  )
A.-3B.3C.5D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=cosx-(sinx)2+2的值域为(  )
A.[1,3]B.[$\frac{1}{2}$,$\frac{11}{4}$]C.[$\frac{3}{4}$,3]D.[$\frac{3}{4}$,$\frac{11}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合U=R,函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A,集合B={x|2≤x<10},集合C={x|x>a}.
(1)求A,(∁UA)∩B;
(2)若(∁UB)∪C=R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案