精英家教网 > 高中数学 > 题目详情
1.cos24°cos36°-sin24°cos54°=(  )
A.cos12°B.sin12°C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 由条件利用诱导公式、两角和差的余弦公式求得所给式子的值.

解答 解:cos24°cos36°-sin24°cos54°=cos24°cos36°-sin24°sin36°=cos(24°+36°)=cos60°=$\frac{1}{2}$,
故选:C.

点评 本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若直线经过点(0,3),且斜率为-2,则直线的方程是2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=3x3+ax+1(a为常数)f(5)=7,则f(-5)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.己知函数f(x)=$\left\{\begin{array}{l}{2x+2,-1≤k<0}\\{-x+2,0≤x<2}\end{array}\right.$,则不等式f(x)≥log2(x+1)的解集是{x|-1<x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,已知四棱锥S-ABCD的侧棱与底面边长都是2,且底面ABCD是正方形,则侧棱与底面所成的角(  )
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=ex+e-x(其中e是自然对数的底数),若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,则实数m的取值范围是(-∞,-$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.集合A={x|x2-3x-10≤0},集合B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求实数m的取值范围;
(2)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式(x-a)(ax-1)<0的解集是$(-∞,\frac{1}{a})∪(a,+∞)$,则实数a的取值范围是[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)将关于x的不等式|x-3|+|x-4|<2;
(2)如果关于x的不等式|x-3|+|x-4|<a的解集是空集,求实数a的取值范围;
(3)对任意x∈R,|2-x|+|3+x|≥a2-4a恒成立,求a的取值范围;
(4)已知m∈R,解关于x的不等式1-x≤|x-m|≤1+x.

查看答案和解析>>

同步练习册答案