精英家教网 > 高中数学 > 题目详情

(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B.
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.

(Ⅰ)-2<k< ;
(Ⅱ)k=-时,使得以线段AB为直径的圆经过双曲线C的右焦点.

解析试题分析:(Ⅰ)由
据题意:    解得-2<k<   ……………5分
(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2), 则由①式得:

假设存在实数k,使得以线段AB为直径的圆过双曲线C的右焦点F(,0),则FAFB.
·=0,(x1)(x2)+y1y2=0,
(x1)(x2)+(kx1+1)(kx2+1)=0,
(1+k2)x1 x2+(k-)(x1+ x2)+=0,
∴(1+k2+(k-)·=0,
∴5k2+2-6=0
∴k=-或k=(-2,-)(舍去)
∴k=-时,使得以线段AB为直径的圆经过双曲线C的右焦点.…………………12分
考点:本题主要考查直线与双曲线的位置关系。
点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理。存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)已知椭圆的离心率为为椭圆的右焦点,两点在椭圆上,且,定点
(1)若时,有,求椭圆的方程;
(2)在条件(1)所确定的椭圆下,当动直线斜率为k,且设时,试求关于S的函数表达式f(s)的最大值,以及此时两点所在的直线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线及点,直线的斜率为1且不过点P,与抛物线交于A,B两点。
(1) 求直线轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C,D,证明:AD、BC交于定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某海域有两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系。

(1)求曲线的标准方程;(6分)
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)过点(1,0)直线交抛物线于A(x1,y1),B(x2,y2)两点,抛物线的顶点是
(ⅰ)证明:为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及的方程.

查看答案和解析>>

同步练习册答案