精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
x
-log2
1+x
1-x

(1)试求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)已知a是方程f(x)=0的一个实数解,求证:|a|>
1
2
分析:(1)要使函数有意义,必须使得分母不为0,对数的真数大于0即可得函数的定义域,再利用f(-x)=-f(x),判断函数的奇偶性;
(2)易证函数在(0,1)上为减函数,在(-1,0)上也是减函数,又f(
1
2
)>0
,问题可得证.
解答:解:(1)由
x≠0
1+x
1-x
>0
得,x∈(-1,0)∪(0,1)------------------------(2分)
f(-x)=
1
-x
-lg
1-x
1+x
=-f(x)
∴f(x)为奇函数--------------------------------------------------(6分)
(2)可证f(x)在(0,1)上是减函数,又f(x)为奇函数∴f(x)在(-1,0)上也是减函数----------(10分)∵f(
1
2
)=2-log23>0
,f(x)为奇函数∴a>
1
2
a<-
1
2
|a|>
1
2
--------------------------(14分)
点评:本题主要考查函数的性质,考查定义域、单调性、奇偶性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案