精英家教网 > 高中数学 > 题目详情
设函数f(x)=xlnx(x>0),g(x)=-x+2,
(I)求函数f(x)在点M(e,f(e))处的切线方程;
(II)设F(x)=ax2-(a+2)x+f′(x)(a>0),讨论函数F(x)的单调性;
(III)设函数H(x)=f(x)+g(x),是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
【答案】分析:(I)f′(x)=lnx+1(x>0),则函数f(x)在点M(e,f(e))处切线的斜率为f′(e)=2,由此能求出函数f(x)在点M(e,f(e))处的切线方程.
(II)F(x)=ax2-(a+2)x+lnx+1,x>0,F′(x)=2ax-(a+2)+=,x>0,a>0,令F′(x)=0,则x=,或,由此进行分类讨论,能求出函数F(x)的单调性.
(III)H(x)=-x+2+xlnx,H′(x)=lnx,令H′(x)=0,则x=1,由此列表讨论,能够推导出存在实数m=1和M=2,使得对每一个t∈[m,M],直线y=t与曲线y=H(x),x∈[]都有公共点.
解答:解:(I)f′(x)=lnx+1(x>0),
则函数f(x)在点M(e,f(e))处切线的斜率为f′(e)=2,f(e)=e,
∴所求切线方程为y-e=2(x-e),即y=2x-e.
(II)F(x)=ax2-(a+2)x+lnx+1,x>0
F′(x)=2ax-(a+2)+
=
=,x>0,a>0,
令F′(x)=0,则x=,或
①当0<a<2,即时,令F′(x)>0,解得0<x<,或x>
令F′(x)<0,解得<x<
∴F(x)在(0,),(,+∞)上单调递增,在()单调递减.
②当a=2,即时,F′(x)≥0恒成立,
∴F(x)在(0,+∞)上单调递增.
③当a>2,即时,令F′(x)>0,解得0<x<或x>
令F′(x)<0,解得<x<
∴F(x)在(0,),(,+∞)上单调递增,在()单调递减.
(III)H(x)=-x+2+xlnx,H′(x)=lnx,令H′(x)=0,则x=1,
当x在区间(,e)内变化时,H′(x),H(x)的变化情况如下表:
x,1)1(1,e)e
H′(x)-+
H(x)2-极小值12
又∵,∴函数的值域为[1,2]. 
据此可得,若,则对每一个t∈[m,M],
直线y=t与曲线y=H(x),x∈[,e]都有公共点;
并且对每一个t∈(-∞,m)∪(M,+∞),直线y=t与曲线y=H(x),x∈[]都没有公共点.
综上,存在实数m=1和M=2,使得对每一个t∈[m,M],
直线y=t与曲线y=H(x),x∈[]都有公共点.
点评:本题考查曲线的切线方程的求法,考查函数的最大值与最小值的应用.综合性强,难度大,具有一定的探索性,对数学思维要求较高.解题时要认真审题,仔细解答,注意导数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

已知函数f(x)=x2-1(x≥1)的图象为 C1,曲线C2与C1关于直线y=x对称。

  (1)求曲线C2的方程y=g(x);

  (2)设函数y=g(x)的定义域为Mxlx2∈ M,且xlx2,求证|g(x1)-g(x2)|<|x1-x2|;

  (3)设AB为曲线C2上任意不同两点,证明直线AB与直线y=x必相交。

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知函数f(x)=x2-1(x≥1)的图象为 C1,曲线C2与C1关于直线y=x对称。

  (1)求曲线C2的方程y=g(x);

  (2)设函数y=g(x)的定义域为Mxlx2∈ M,且xlx2,求证|g(x1)-g(x2)|<|x1-x2|;

  (3)设AB为曲线C2上任意不同两点,证明直线AB与直线y=x必相交。

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0),如果f(x1)=f(x2)(x1≠x2),则f(xl+x2)等于(    )

A.-          B.-                 C.c                  D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省淮北市高三第一次模拟考试文科数学 题型:解答题

.(本题满分13分)设函数,方程f(x)=x有唯一的解,

  已知f(xn)=xn+1(n∈N﹡)且f(xl)=

  (1)求证:数列{)是等差数列;

  (2)若,求Sn=b1+b2+b3+…+bn

  (3)在(2)的条件下,是否存在最小正整数m,使得对任意n∈N﹡,有成立,若存在,求出m的值;若不存在,请说明理由。

 

 

 

查看答案和解析>>

同步练习册答案