精英家教网 > 高中数学 > 题目详情

【题目】如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得 M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.

【答案】150
【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100 m.
在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,
由正弦定理得, ,因此AM=100 m.
在RT△MNA中,AM=100 m,∠MAN=60°,由
得MN=100 × =150m.
故答案为:150.
由题意,可先求出AC的值,从而由正弦定理可求AM的值,在RT△MNA中,AM=100 m,∠MAN=60°,从而可求得MN的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).
(1)求点A和点B的坐标;
(2)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂随机抽取部分工人调查其上班路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),若上班路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].

(1)求直方图中a的值;
(2)如果上班路上所需时间不少于1小时的工人可申请在工厂住宿,若招工2400人,请估计所招工人中有多少名工人可以申请住宿;
(3)该工厂工人上班路上所需的平均时间大约是多少分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

()求函数的单调区间

()若函数有两个极值点求证:

()对于任意总存在使成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: (a>0,b>0)过点A(1,0),且离心率为
(1)求双曲线C的方程;
(2)已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的长轴与短轴的一个端点, 是椭圆的左、右焦点,以点为圆心、3为半径的圆与以点为圆心、1为半径的圆的交点在椭圆上,且

(1)求椭圆的方程;

(2)设为椭圆上一点,直线轴交于点,直线轴交于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为( )
A.
B.an=n﹣1
C.an=n(n﹣1)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩清况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:

甲校:

乙校:

(1)计算的值;

(2)若规定考试成绩在内为优秀,请根据样本估计乙校数学成绩的优秀率;

(3)由以上统计数据填写下面列联表,并判断是否有的把握认为两个学校的数学成绩有差异.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x1 , x2是方程x2﹣mx﹣1=0的两个实根,且不等式a2+4a﹣3≤|x1﹣x2|对任意m∈R恒成立;命题q:不等式x2+2x+a<0有解,若命题p∨q为真,p∧q为假,求a的取值范围.

查看答案和解析>>

同步练习册答案