精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的导函数零点的个数;

2)若的最小值为,求的取值范围.

【答案】1)当时,只有一个零点;当时,有两个零点;(2

【解析】

(1)求导因式分解可得,再分析导函数中的单调性,进而根据函数零点的大小关系判断零点的个数即可.

(2)根据(1)中所得的单调性,两种情况讨论,分析函数的极值点所在的区间,结合函数的单调性分析是否满足最小值为即可.

解:(1的定义域为,

,

,解得,

,则,故上单调递增.

.又当.

故当时,只有一个零点;

时,有两个零点.

2)当时,,所以上单调递减,在上单调递增,则处取得最小值,符合题意.

时,则上单调递增,则必存在正数使得.

,则,上单调递增,在上单调递减,

,故不符合题意

,则,所以,上单调递增,又,故不符合题意.

,则,上单调递增,在上单调递减,

,时,与的最小值为矛盾.

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2019年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示:

1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司20204月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,现有AB两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料的使用寿命不同,现对AB两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

经甲公司测算平均每件新型材料每月可以带来6万元收人入,不考虑除采购成本之外的其他成本,A型号材料每件的采购成本为10万元,B型号材料每件的采购成本为12万元.假设每件新型材料的使用寿命都是整月数,且以频率作为每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的平均值为决策依据,你会选择采购哪款新型材料?

参考数据:.

参考公式:回归直线方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医院对治疗支气管肺炎的两种方案进行比较研究,将志愿者分为两组,分别采用方案和方案进行治疗,统计结果如下:

有效

无效

合计

使用方案

96

120

使用方案

72

合计

32

1)完成上述列联表,并比较两种治疗方案有效的频率;

2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线上一点作直线交抛物线E于另一点N.

1)若直线MN的斜率为1,求线段的长.

2)不过点M的动直线l交抛物线EAB两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,极点为,一条封闭的曲线由四段曲线组成:.

1)求该封闭曲线所围成的图形面积;

2)若直线与曲线恰有3个公共点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为,且直线与曲线C有两个不同的交点.

1)求实数a的取值范围;

2)已知M为曲线C上一点,且曲线C在点M处的切线与直线垂直,求点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆的离心率为,点在椭圆C.

1)求椭圆C的标准方程;

2)过坐标原点的直线交CPQ两点,点P在第一象限,轴,垂足为E,连结QE并延长交C于点G.

①求证:是直角三角形;

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的所有棱长均为2

(Ⅰ)证明:

(Ⅱ)若平面平面的中点,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案