科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为.求:
(Ⅰ)求实数的取值范围;
(Ⅱ)求圆的方程;
(Ⅲ)问圆是否经过某定点(其坐标与b 无关)?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
依法纳税是每个公民应尽的义务,国家征收个人工资、薪金所得税是分段计算的:总收入不超过2 000元的,免征个人工资、薪金所得税;超过2 000元部分需征税,设全月纳税所得额(所得额指工资、薪金中应纳税的部分)为x,x=全月总收入-2 000元,税率如表所示:
级数 | 全月应纳税所得额x | 税率 |
1 | 不超过500元部分 | 5% |
2 | 超过500元至2 000元部分 | 10% |
3 | 超过2 000元至5 000元部分 | 15% |
… | … | … |
9 | 超过100 000元部分 | 45% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品.
(Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒。
(1)试把方盒的容积表示成的函数;
(2)求多大时,做成方盒的容积最大。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com