精英家教网 > 高中数学 > 题目详情

(理)C1(a>b>0)左右焦点分别为F1,F2,右顶点为A,P为C1上任意一点,的最大值的取值范围为[c2,3c2],c=

(1)求点C1的离心率e的范围;

(2)设双曲线C2以C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限上任意一点,当e取最小值时,猜想是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,说明理由.

答案:
解析:

  (理)(1)P(x,y),=x2+y2-c2=c2x2/a2+b2-c2,当x2=a2时,c2≤b2≤3c2,1/2≤e≤/2

  (2)e=1/2,C2:3x2-y2=3c2,A(2c,0),B(x0,y0)(x0,y0>0),AB⊥x轴时,λ=2,猜想λ=2;x0≠2c时

  tan∠BAF1=-,tan∠BF1A=,由倍角公式得出结论,存在λ=2满足条件


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求数列{pn}的通项公式pn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)(理)若已知曲线C1方程为x2-
y2
8
=1(x≥0,y≥0)
,圆C2方程为(x-3)2+y2=1,斜率为k(k>0)直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,|AB|=
3
,则直线AB的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年山东卷理)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为

(A)                                 (B)

(C)                                    (D)

查看答案和解析>>

科目:高中数学 来源:2008年上海市杨浦区高考数学二模试卷(理科)(解析版) 题型:解答题

(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程,如果椭圆C1经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若,求数列{pn}的通项公式pn

查看答案和解析>>

同步练习册答案