精英家教网 > 高中数学 > 题目详情
10.求两条平行直线5x+2y-5=0和10x+4y+35=0之间的距离.

分析 根据题意,将直线5x+2y-5=0变形为10x+4y-10=0,利用平行线间的距离公式计算可得答案.

解答 解:根据题意,直线5x+2y-5=0可以变形为10x+4y-10=0,
两直线间的距离d=$\frac{|35-(-10)|}{\sqrt{1{0}^{2}+{4}^{2}}}$=$\frac{45\sqrt{29}}{58}$;
故两条平行直线5x+2y-5=0和10x+4y+35=0之间的距离为$\frac{45\sqrt{29}}{58}$.

点评 本题考查平行线间的距离公式的计算,注意公式运用的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若集合A={x|x2-4x≤0},B={x|x2-2x>0},则A∩B=(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.三角形ABC中,a(cosB+cosC)=b+c,
(1)求证A=$\frac{π}{2}$
(2)若三角形ABC的外接圆半径为1,求三角形ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设△ABC的内角A,B,C的对边分别为a,b,c,且cosB=$\frac{3}{5}$,cosC=$\frac{5}{13}$,c=3,则a=$\frac{14}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$满足<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,且{|$\overrightarrow{a}$|,|$\overrightarrow{b}$|,|$\overrightarrow{c}$|}={1,2,3},则|$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$|的最大值是(  )
A.$\sqrt{7}+3$B.$\sqrt{19}+1$C.$\sqrt{13}+2$D.$\sqrt{15}+3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过抛物线y2=2px定点(p>0)上一定点P(x0,y0)(y0≠0)分别作斜率为k和-k的直线l1,l2,设l1,l2分别与抛物线y2=2px交于A,B两点,证明:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=3kx3+$\frac{2}{x}$-2(k∈R),f(lg7)=1(k∈R),则f(lg$\frac{1}{7}$)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求证:1+cosα+2$si{n}^{2}\frac{α}{2}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若k为整数,则cos(kπ+$\frac{π}{3}$)的值为(  )
A.±$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案