精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)={log_{0.5}}({{x^2}-2tx+13})$的值域为(-∞,-2],则实数t的值为±3.

分析 用换元法,令g(x)=x2-2tx+13,由题意得g(x)≥0.5-2,列出不等式求出t的值.

解答 解:令g(x)=x2-2tx+13,
由题意知:g(x)≥0.5-2
即x2-2tx+13≥4,
化简得x2-2tx+9≥0;
所以,△=4t2-4×9=0,
解得t=±3.
故答案为:±3.

点评 本题考查了对数函数的值域和一元二次不等式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.使内接椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的矩形面积最大,矩形的长为$\sqrt{2}$a,宽为$\sqrt{2}$b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数$f(x)={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2014}}{x^{2014}}(x∈R)$是奇函数,则a0+a2+a4+…+a2014=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$a>b>0,a+b=1,x=-{(\frac{1}{a})^b},y=1o{g_{ab}}(\frac{1}{a}+\frac{1}{b}),z=1o{g_b}\frac{1}{a}$,则(  )
A.x<z<y??B.x<y<z??C.z<y<x??D.x=y<z??

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆5x2-ky2=5的一个焦点是(0,2),那么k等于(  )
A.-1B.1C.$\sqrt{5}$D.$-\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,设直线l:3x-4y+a=0与圆C:x2+y2=4相交于A、B两点,以OA、OB为邻边作平行四边形OAMB,若点M在圆C上,则实数a=±5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知一个圆C经过两个点A(6,-2),B(-1,5),且圆心在直线l:x-2y+1=0上,求此圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合$A=\left\{{x{{\left|{({\frac{1}{2}})}\right.}^x}>1}\right\}$,集合B={x|lgx<0}则A∩B(  )
A.{x|x<0}B.{x|0<x<1}C.{x|x>1}D.φ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A={x|a<x<3+a},B={x|x≤-1或x≥1};
(1)若A∪B=R,求实数a的取值范围;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案