精英家教网 > 高中数学 > 题目详情
5.对于直线l,m,平面α,m?α,则“l⊥m”是“l⊥α”成立的必要不充分条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个).

分析 根据线面垂直的性质和定义即可得到结论.

解答 解:根据线面垂直的定义可知,
∵m?α,
若l?α,当l⊥m时,l⊥α成立,
若l?α,则l⊥α不成立,
∴若l⊥α,则根据线面垂直的性质可知,l⊥m成立,
即“l⊥m”是“l⊥α”成立的必要不充分条件,
故答案为:必要不充分.

点评 本题主要考查充分条件和必要条件的定义,利用线面垂直的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式an=n,其前n项和为Sn,数列{bn}满足b1=1,bnbn+1+2nbn+1-2n+1bn=0(n∈N*
(1)求数列{bn}的通项公式;
(2)设cn=Snbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{{{log}_2}x-1}$的定义域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设A=37+C7235+C7433+C763,B=C7136+C7334+C7532+1,则A-B=128.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.使$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$>$\frac{995}{1994}$成立的最小的自然数是249.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中正确的是(  )
A.?x0>0使“ax0>bx0”是“a>b>0”的必要不充分条件
B.命题“?x0∈(0,+∞),lnx0=x0-1”的否定是“?x0∉(0,+∞),lnx0≠x0-1”
C.命题“若x2=2,则x=$\sqrt{2}$或x=-$\sqrt{2}$”的逆否命题是“若x≠$\sqrt{2}$或x≠-$\sqrt{2}$,则x2≠2”
D.若p∨q为真命题,则p∧q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,α∈($\frac{π}{3}$,$\frac{5π}{6}$),则cos(α+$\frac{π}{3}$)=$\frac{-2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=3cosωx(ω>0)在(0,π)上恰有一个最大值和一个最小值,则ω的取值范围是(  )
A.($\frac{1}{4},1$]B.(1,$\frac{3}{2}$]C.($\frac{3}{2},\frac{8}{5}$]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=|x2-2ax|+2x的最小值.

查看答案和解析>>

同步练习册答案