精英家教网 > 高中数学 > 题目详情
1.6本不同的书分给甲、乙、丙三个人,一人得三本,一人得两本,一人得一本的分法共有多少种?

分析 根据题意,分2步进行分析:①、先把6本数分为3-2-1的3组,由组合数公式可得分组方法数目,②、将分好的3组对应甲、乙、丙三个人,进行全排列即可;由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、先把6本数分为3-2-1的3组,有C61C52C33=60种分组方法;
②、将分好的3组对应甲、乙、丙三个人,有A33=6种情况,
则满足题意的分法共有60×6=360种;
答:一人得三本,一人得两本,一人得一本的分法共有360种.

点评 本题考查排列组合的应用,解答时注意要先分组,再进行全排列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.有穷数列a1,a2,a3,…,a2015中的每一项都是-1,0,1这三个数中的某一个数,若a1+a2+a3+…+a2015=427且(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3869,则有穷数列a1,a2,a3,…,a2015中值为0的项数是(  )
A.1000B.1015C.1030D.1045

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知${(\root{4}{{\frac{1}{x}}}+2•\root{3}{x^2})^n}$二项展开式中第三项的系数为180,求:
(Ⅰ)含x3的项;
(Ⅱ)二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,|$\overrightarrow{a}$|=3,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{13}$.
(1)求|$\overrightarrow{b}$|;
(2)求2$\overrightarrow{a}$-$\overrightarrow{b}$在$\overrightarrow{b}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+3x+2的值,当x=-2时,v3的值为(  )
A.-7B.-20C.-40D.-39

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要得到函数y=sin2x的图象,只需将函数y=sin(2x-1)的图象(  )
A.向左平移1个单位B.向右平移1个单位
C.向左平移$\frac{1}{2}$个单位D.向右平移$\frac{1}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知各项不为0的等差数列{an}满足2a2-a72+2a12=0,数列{bn}是等比数列,且b7=a7,Tn表示数列{bn}的前n项积,求T13
(2)不等式(m2-2m-3)x2-(m-3)x-1<0的解集为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解关于x的不等式:①$\frac{x-1}{2x-1}≥2$;   ②(2mx-1)(x-2)<0(m为实常数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\frac{lnx}{x}$,有下列四个命题:
①?x1,x2∈R+,$f(\frac{{{x_1}+{x_2}}}{2})>\frac{{f({x_1})+f({x_2})}}{2}$;
②?x1,x2∈R+,$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$;
③?x∈R+,?d∈R+,f′(x)<$\frac{{f({x+d})-f(x)}}{d}$;
④?x∈R+,?d∈R+,f′(x)>$\frac{{f({x+d})-f(x)}}{d}$.
其中的真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案