已知函数f(x)=,x∈[1,+∞
(1)当a=时,求函数f(x)的最小值。
(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围。
(1) f(x)在区间[1,+∞上的最小值为f(1)= (2) 当x=1时,ymin=3+a,当且仅当ymin=3+a>0时,函数f(x)>0恒成立,故a>-3。
当a=时,f(x)=x++2
∵f(x)在区间[1,+∞上为增函数,
∴f(x)在区间[1,+∞上的最小值为f(1)=。
(2)解法一: 在区间[1,+∞上,
f(x)= >0恒成立x2+2x+a>0恒成立。
设y=x2+2x+a,x∈[1,+∞
∵y=x2+2x+a=(x+1)2+a-1递增,
∴当x=1时,ymin=3+a,当且仅当ymin=3+a>0时,函数f(x)>0恒成立,故a>-3。
解法二: f(x)=x++2,x∈[1,+∞
当a≥0时,函数f(x)的值恒为正;
当a<0时,函数f(x)递增,故当x=1时,f(x)min=3+a,
当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,故a>-3。
科目:高中数学 来源: 题型:
|
1 |
π |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中数学 来源: 题型:
x-1 | x+a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com