精英家教网 > 高中数学 > 题目详情

如图,垂直于正方形所在的平面,

(1)求证:

(2)设棱的中点为求异面直线所成角的大小.

(Ⅰ)  见解析  (Ⅱ)  60°


解析:

(1)证明:

所以,

(2)取的中点分别为 连接

 又

所以为异面直线所成角或其补角计算易得 即异面直线所成角为60°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,SD垂直于正方形ABCD所在的平面,AB=1,SB=
3

(1)求证:BC⊥SC;
(2)设棱SA的中点为M,求异面直线DM与SC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的四棱锥,SD垂直于正方形ABCD所在的底面,AB=1,SB=
3

(1)求证:BC⊥SC;
(2)求SB与底面ABCD所成角的正切值;
(3)设棱SA的中点为M,求异面直线DM与SC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)如图,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,其中A与A'重合,且BB′<DD′<CC′.
(1)证明AD′∥平面BB′C′C,并指出四边形AB′C′D′的形状;
(2)如果四边形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的边长为
6
,求平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在平面内,ABCD边长为2的正方形,ADD″A1和CDD″C1都是正方形.将两个正方形分别沿AD,CD折起,使D″与D′重合于点D1.设直线l过点B且垂直于正方形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为θ,当t=2时,求θ的余弦值;
(2)当t>2时在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,请说明理由.
精英家教网

查看答案和解析>>

同步练习册答案