精英家教网 > 高中数学 > 题目详情

【题目】已知实数,函数

1)讨论函数的单调性;

2)若是函数的极值点,曲线在点处的切线分别为,且轴上的截距分别为.若,求的取值范围.

【答案】1)当时,上单调递减;当时,上单调递减,在上单调递增;(2

【解析】

1)求导后得;分别在两种情况下,根据的符号可确定的单调性;

(2)由极值点定义可构造方程求得,得到;根据导数的几何意义可求得在处的切线方程,进而求得;由可求得的关系,同时确定的取值范围;将化为,令,利用导数可求得的单调性,进而求得的值域即为的范围.

(1).

.

①当,即时,上单调递减;

②当,即时,

时,;当时,

上单调递减,在上单调递增.

综上所述:当时,上单调递减;当时,上单调递减,在上单调递增.

(2)的极值点,,即

解得:(舍),此时.

方程为:

,得:;同理可得:.

,整理得:

,则,解得:

.

,则

上单调递增,又

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为

1)求直线的普通方程和圆的直角坐标方程;

2)设圆与直线交于两点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,.

(Ⅰ)求证:

(Ⅱ)若平面平面,且直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)在上有两个零点,则的范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,的中点,.

(Ⅰ)求证:平面

(Ⅱ)异面直线所成角的余弦值为,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的极大值;

2)证明:当时,恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.其中干支是天干:甲、乙、丙、丁、戊、已、庚、辛、壬、癸十个符号;地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号.把干支顺序相配正好六十为一周,周而复始,循环记录,即甲子、乙丑、丙寅、…….2020年是“庚子年”,则我国建国一百周年(2049年)是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的图象在点处的切线方程;

(2)若上有解,求的取值范围;

(3)设是函数的导函数,是函数的导函数,若函数的零点为,则点恰好就是该函数的对称中心.试求的值.

查看答案和解析>>

同步练习册答案