【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
若直线l过点A(4,0),且被圆C1截得的弦长为2 , 求直线l的方程
科目:高中数学 来源: 题型:
【题目】某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].则图中x的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的椭圆的标准方程:
(1)焦点在y轴上,焦距是4,且经过点M(3,2);
(2)c∶a=5∶13,且椭圆上一点到两焦点的距离的和为26.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四种说法
①在△ABC中,若∠A>∠B,则sinA>sinB;
②等差数列{an}中,a1 , a3 , a4成等比数列,则公比为;
③已知a>0,b>0,a+b=1,则+的最小值为5+2;
④在△ABC中,已知== , 则∠A=60°.
正确的序号有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元,2000元.甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工一件甲所需工时分别为1,2,加工一件乙设备所需工时分别为2,1.A、B两种设备每月有效使用台时数分别为400和500,分别用表示计划每月生产甲,乙产品的件数.
(Ⅰ)用列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别生产甲、乙两种产品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点F1、F2是椭圆C1的左右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2 , 椭圆C1与双曲线C2的离心率分别为e1、e2 , 则( )
A.e22=
B.e22=
C.e22=
D.e22=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com