【题目】已知函数.
讨论函数
的极值点的个数;
若函数
有两个极值点
,
,证明:
.
【答案】(1)见解析 (2)见解析
【解析】
先求出函数的导函数,通过讨论a的范围确定导函数的符号,从而得出函数的单调区间,进而判断函数极值点个数;
由
可知当且仅当
时
有极小值
和极大值
,且
,
是方程的两个正根,则
,
根据函数
表示出
,令
,通过对
求导即可证明结论.
解:函数
,
,
,
当
时,
,
,
当时,
,
单调递减;
当时,
,
单调递增;
当
时,
有极小值;
当时,
,故
,
在
上单调递减,故此时
无极值;
当时,
,方程
有两个不等的正根
,
.
可得,
.
则当及
时,
,
单调递减;
当时,
;
单调递增;
在
处有极小值,在
处有极大值.
综上所述:当时,
有1个极值点;
当时,
没有极值点;
当时,
有2个极值点.
由
可知当且仅当
时
有极小值点
和极大值点,且
,
是方程的两个正根,
则,
.
;
令,
;
,
在
上单调递减,故
,
.
科目:高中数学 来源: 题型:
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积 | 1 | 2 | 3 | 4 | 5 |
管理时间 | 8 | 10 | 13 | 25 | 24 |
并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相关系数的大小,并判断管理时间
与土地使用面积
是否线性相关?
(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?
(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求
的分布列及数学期望。
参考公式:
其中。临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,把函数
的图象向右平移
个单位,再把图象上所有的点的横坐标缩小到原来的一半(纵坐标不变),得到函数
的图象,则下列结论正确的是( )
A.的最小正周期为
B.
的图象关于直线
对称
C.的一个零点为
D.
在
上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,再从这5人中选出2人作重点发言,求作重点发言的2人中,至少1人是女生的概率.
参考公式:,其中
.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学研究表明,人极易受情绪的影响,某选手参加7局4胜制的兵乒球比赛.
(1)在不受情绪的影响下,该选手每局获胜的概率为;但实际上,如果前一句获胜的话,此选手该局获胜的概率可提升到
;而如果前一局失利的话,此选手该局获胜的概率则降为
,求该选手在前3局获胜局数
的分布列及数学期望;
(2)假设选手的三局比赛结果互不影响,且三局比赛获胜的概率为,记
为锐角
的内角,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8.鱼苗乙,丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.
(1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为,求
的分布列和数学期望;
(2)试验后发现乙种鱼苗较好,扶贫工作组决定购买尾乙种鱼苗进行大面积养殖,为提高鱼苗的成活率,工作组采取增氧措施,该措施实施对能够自然成活的鱼苗不产生影响.使不能自然成活的鱼苗的成活率提高了50%.若每尾乙种鱼苗最终成活后可获利10元,不成活则亏损2元,且扶贫工作组的扶贫目标是获利不低于37.6万元,问需至少购买多少尾乙种鱼苗?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】瑞士著名数学家欧拉在研究几何时曾定义欧拉三角形,的三个欧拉点(顶点与垂心连线的中点)构成的三角形称为
的欧拉三角形.如图,
是
的欧拉三角形(H为
的垂心).已知
,
,
,若在
内部随机选取一点,则此点取自阴影部分的概率为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点为
,左右两顶点
,点
为椭圆
上任意一点,满足直线
的斜率之积为
,且
的最大值为4.
(1)求椭圆的标准方程;
(2)若直线与过点
且与
轴垂直的直线交于点
,过点
作
,垂足分别为
两点,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com