精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知两定点,动点满足.

1)求动点的轨迹的方程;

2)轨迹上有两点,它们关于直线对称,且满足,求的面积.

【答案】(1)动点的轨迹是圆,其方程为(2)

【解析】

1)设动点的坐标为表示出化简可得.
2)根据对称,由垂径定理可得圆心在直线上,即可求出直线的方程,易知垂直于直线,且.的中点为,则,计算可得的值,即可求出的面积.

1)设动点的坐标为,则.

整理得,故动点的轨迹是圆,且方程为.

2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点关于直线对称,由垂径定理可得圆心在直线上,代入并求得,故直线的方程为.

易知垂直于直线,且.

的中点为,则

,又.

,∴.

易知,故的距离等于,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】每个国家身高正常的标准是不一样的,不同年龄、不同种族、不同地区身高都是有差异的,我们国家会定期进行018岁孩子身高体重全国性调查,然后根据这个调查结果制定出相应的各个年龄段的身高标准.一般测量出一个孩子的身高,对照一下身高体重表,如果在平均值标准差以内的就说明你的孩子身高是正常的,否则说明你的孩子可能身高偏矮或偏高了.根据科学研究018岁的孩子的身高服从正态分布.在某城市随机抽取10018岁男大学生得到其身高()的数据.

1)记表示随机抽取的10018岁男大学生身高的数据在之内的人数,求的数学期望.

2)若18岁男大学生身高的数据在之内,则说明孩子的身高是正常的.

i)请用统计学的知识分析该市18岁男大学生身高的情况;

ii)下面是抽取的10018岁男大学生中20名大学生身高()的数据:

1.65

1.62

1.74

1.82

1.68

1.72

1.75

1.66

1.73

1.67

1.86

1.81

1.74

1.69

1.76

1.77

1.69

1.78

1.63

1.68

经计算得,其中为抽取的第个学生的身高,.用样本平均数作为的估计值,用样本标准差作为的估计,剔除之外的数据,用剩下的数据估计的值.(精确到0.01

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中真命题是  

A. 同垂直于一直线的两条直线互相平行

B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱

C. 过空间任一点与两条异面直线都垂直的直线有且只有一条

D. 过球面上任意两点的大圆有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,已知,顶点P在平面ABC上的射影为的外接圆圆心.

1)证明:平面平面ABC

2)若点M在棱PA上,,且二面角P-BC-M的余弦值为,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】绿水青山就是金山银山.近年来,祖国各地依托本地自然资源,打造旅游产业,旅游业正蓬勃发展.景区与游客都应树立尊重自然、顺应自然、保护自然的生态文明理念,合力使旅游市场走上规范有序且可持续的发展轨道.某景区有一个自愿消费的项目:在参观某特色景点入口处会为每位游客拍一张与景点的合影,参观后,在景点出口处会将刚拍下的照片打印出来,游客可自由选择是否带走照片,若带走照片则需支付20元,没有被带走的照片会收集起来统一销毁.该项目运营一段吋间后,统计出平均只有三成的游客会选择带走照片,为改善运营状况,该项目组就照片收费与游客消费意愿关系作了市场调研,发现收费与消费意愿有较强的线性相关性,并统计出在原有的基础上,价格每下调1元,游客选择带走照片的可能性平均增加0.05,假设平均每天约有5000人参观该特色景点,每张照片的综合成本为5元,假设每个游客是否购买照片相互独立.

1)若调整为支付10元就可带走照片,该项目每天的平均利润比调整前多还是少?

2)要使每天的平均利润达到最大值,应如何定价?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:与直线交于AB两点.

1)当取得最小值为时,求的值.

2)在(1)的条件下,过点作两条直线PMPN分别交抛物线CMNMN不同于点P)两点,且的平分线与轴平行,求证:直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,点在棱上,且.

(Ⅰ)求证:

(Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源于中国古代数学家祖冲之的圆周率。公元263年,中国数学家刘徽用“割圆术”计算圆周率,计算到圆内接3072边形的面积,得到的圆周率是.公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率和约率。大约在公元530年,印度数学大师阿耶波多算出圆周率约为).在这4个圆周率的近似值中,最接近真实值的是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆C上.

(1)求椭圆C的标准方程;

(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为不在坐标轴上),若直线x轴,y轴上的截距分别为,证明:为定值;

(3)若是椭圆上不同两点,轴,圆E,且椭圆上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案