精英家教网 > 高中数学 > 题目详情
15.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.f(x)=-$\sqrt{x+1}$B.f(x)=${(\frac{1}{2})}^{x}$C.f(x)=lnx+2D.f(x)=x+$\frac{1}{x}$

分析 根据基本初等函数的单调性判断即可.

解答 解:A、f(x)=-$\sqrt{x+1}$,当x≥-1时,函数f(x)为减函数,
B、f(x)=$(\frac{1}{2})^{x}$是减函数,
C、f(x)=lnx+2,在(0,+∞)上是增函数,
D、f(x)=x+$\frac{1}{x}$在(0,1)为减函数,在(1,+∞)上是增函数,
故选C.

点评 此题主要考查函数单调性的判断,掌握基本初等函数的单调性是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,D、E分别为AC,AB边上的点,$\frac{CD}{DA}$=$\frac{AE}{EB}$=$\frac{1}{2}$,记$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$.求证:$\overrightarrow{DE}$=$\frac{1}{3}$($\overrightarrow{b}$-$\overrightarrow{a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.证明:对于不小于3的自然数n,都存在一个自然数an,使得它可以表示为自己的n个互不相等的正约数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若对于任意实数x都会使|x-2|+|x-1|≥a成立,则实数a的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a>0,b>0若$\sqrt{{3}^{5}}$是3a与3b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.$\frac{8}{3}$B.$\frac{4}{5}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:函数f(x)=lg(1-x)+lg(p+x),其中p>-1
(1)求f(x)的定义域;
(2)若p=1,当x∈(-a,a]其中a∈(0,1),a是常数时,函数f(x)是否存在最小值,若存在,求出f(x)的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(3${\;}^{{x}^{2}-1}$)的定义域是[-1,1],则f(log3x)的定义域是(  )
A.(0,$\root{3}{3}$)B.[$\root{3}{3}$,3]C.[3,+∞)D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知三角形的顶点A(-5,0),B(3,-3),C(0,2),试求:
(1)BC边所在直线的方程;
(2)AC边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知复数z0满足|2z0+15|=$\sqrt{3}$|$\overline{{z}_{0}}$+10|,
(1)求证:|z0|为定值;
(2)设x=$\frac{1+i}{2}$,zn=z0xn,若an=|zn-zn-1|,n∈N*,求$\underset{lim}{n→∞}$(a1+a2+…+an).

查看答案和解析>>

同步练习册答案