精英家教网 > 高中数学 > 题目详情
15.已知P为椭圆4x2+y2=4上的点,O为原点,则|OP|的取值范围是[1,2].

分析 直接化椭圆方程为标准方程,求出椭圆的长半轴及短半轴长得答案.

解答 解:由4x2+y2=4,得${x}^{2}+\frac{{y}^{2}}{4}=1$.
∴a2=4,b2=1,则a=2,b=1.
∴|OP|的取值范围是[1,2].
故答案为:[1,2].

点评 本题考查椭圆的简单性质,考查了椭圆的标准方程,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且椭圆C上的点到椭圆右焦点F的最小距离为$\sqrt{2}$-1.
(1)求椭圆C的方程;
(2)过点F且不与坐标轴平行的直线l与椭圆C交于A,B两点,线段AB的中点为M,O为坐标原点,直线OA,OM,OB的斜率为kOA,kOM,kOB,若kOA,-kOM,kOB成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i是虚数单位,若$z({1-\frac{1}{2}i})=\frac{1}{2}i$,则|Z|=(  )
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上单调递增,则a的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$,则z=$\frac{y+1}{x+1}$的范围是(  )
A.$[\frac{1}{3},2]$B.$[-\frac{1}{2},\frac{1}{2}]$C.$[\frac{1}{2},\frac{3}{2}]$D.$[\frac{3}{2},\frac{5}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆$C:{x^2}+{y^2}+2\sqrt{2}x-10=0$,点$A(\sqrt{2},0)$,P是圆上任意一点,线段AP的垂直平分线l和半径CP相交于点Q.
(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;
(Ⅱ)直线$y=kx+\sqrt{2}$与点Q的轨迹交于不同两点A和B,且$\overrightarrow{OA}•\overrightarrow{OB}=1$(其中O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.a,b,c,m,n,表示直线,α,β表示平面,给出下列四个命题:
①若a∥α,b∥α,则a∥b;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若a⊥c,b⊥c,则a∥b;
④若α⊥γ,β⊥γ,则α∥β
⑤若m⊥α,n∥α,则m⊥n;
其中正确命题的有②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.$tanϕ=-\sqrt{3}$,ϕ为第四象限角,则cosϕ=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-9,$g(x)=\frac{x}{x-3}$,那么f(x)•g(x)=x2+3x (x≠3).

查看答案和解析>>

同步练习册答案