精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为为参数),直线经过点且倾斜角为.

1)求曲线的极坐标方程和直线的参数方程;

2)已知直线与曲线交于,满足的中点,求.

【答案】1;(2.

【解析】

1)由曲线的参数方程消去参数可得曲线的普通方程,由此可求曲线的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;

2)将直线的参数方程,代入曲线的普通方程,整理得,利用韦达定理,根据的中点,解出即可.

1)由为参数)消去参数,

可得,即

已知曲线的普通方程为

,即

曲线的极坐标方程为

直线经过点,且倾斜角为

直线的参数方程:为参数,.

2)设对应的参数分别为.

将直线的参数方程代入并整理,

.

的中点,

,即

,即

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6tA型卡车,6辆载重为10tB型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为).

(I)求直线的极坐标方程及曲线的直角坐标方程;

(Ⅱ)已知是直线上的一点,是曲线上的一点, ,若的最大值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,点B与点A-1,1)关于原点O对称,P是动点,且直线APBP的斜率之积等于.

(Ⅰ)求动点P的轨迹方程;

(Ⅱ)设直线APBP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数().

1)讨论函数的单调性;

2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成绩(分)

乙的成绩(分)

(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.

(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:

方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.

方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.

已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过作两条直线分别与圆相切于,且为直角三角形. 又知椭圆上的点与圆上的点的最大距离为.

1)求椭圆及圆的方程;

2)若不经过点的直线(其中)与圆相切,且直线与椭圆交于,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:对任意的,若,则,且,设集合,集合中元素最小值记为,集合中元素最大值记为

(1)对于数列:,写出集合

(2)求证:不可能为18

(3)求的最大值以及的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,点是函数图象上不同的两点,则为坐标原点)的取值范围是(  )

A. B.

C. D.

查看答案和解析>>

同步练习册答案