精英家教网 > 高中数学 > 题目详情

【题目】数学课上,老师为了提高同学们的兴趣,先让同学们从1到3循环报数,结果最后一个同学报2;再让同学们从1到5循环报数,最后一个同学报3;又让同学们从1到7循报数,最后一个同学报4.请你设计一个算法,计算这个班至少有多少人,并画出程序框图.

【答案】程序框图见解析.

【解析】试题分析:

本题是程序框图的实际应用,解题的关键是正确理解题意。设这个班有x个同学,则x满足三个条件:①x除以32;②x除以53;③x除以74.因此解题时只要从x=7开始依次增加1,直至三个条件全满足时即得到的数为最少人数,从而可画出程序框图.

试题解析

算法如下:

第一步,选择一个起始数x7

第二步,判断这个数是否满足除以3余2. 如果不满足,则加1后再判断,直至满足,转入第三步.

第三步,判断第二步得到的数是否满足除以5余3. 如果不满足,则加1后再转入第二步判断,直至满足,转入第四步.

第四步,判断第三步得到的数是否满足除以7余4. 如果不满足,则加1后再转入第二步判断,直至满足,转入第五步.

第五步,输出第四步得到的数,即为所求的最小值.

程序框图如右图所示:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.

(1)求证:|EA|+|EB|为定值;

(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙3个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这3个协会中抽取6名运动员组队参加比赛.

(1)求应从这3个协会中分别抽取的运动员的人数.

(2)将抽取的6名运动员进行编号编号分别为A1A2A3A4A5A6.现从这6名运动员中随机抽取2人参加双打比赛.

①用所给编号列出所有可能的结果;

②设事件A为“编号为A5A62名运动员中至少有1人被抽到”求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是__________.(写出所有正确命题的序号)

①已知,“”是“”的充要条件;

②已知平面向量,“”是“”的必要不充分条件;

③已知,“”是“”的充分不必要条件;

④命题:“,使”的否定为:“,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC与△A1B1C1不全等,且A1B1∥AB,B1C1∥BC,C1A1∥CA.求证:AA1,BB1,CC1交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一张半径为4的圆形纸片的圆心为 是圆内一个定点,且 是圆上一个动点,把纸片折叠使得重合,然后抹平纸片,折痕为,设与半径的交点为,当在圆上运动时,则点的轨迹为曲线,以所在直线为轴, 的中垂线为轴建立平面直角坐标系,如图.

(1)求曲线的方程;

(2)曲线轴的交点为 左侧),与轴不重合的动直线过点且与交于两点(其中轴上方),设直线交于点,求证:动点恒在定直线上,并求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)用定义证明:函数在区间上是减函数;

(2)若函数是偶函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);

(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

同步练习册答案