【题目】设函数有两个极值点.
(1)求实数的取值范围;
(2)求证:.
科目:高中数学 来源: 题型:
【题目】已知椭圆()的离心率为,以的短轴为直径的圆与直线相切.
(1)求的方程;
(2)直线交于,两点,且.已知上存在点,使得是以为顶角的等腰直角三角形,若在直线的右下方,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,,是某景区的两条道路(宽度忽略不计,为东西方向),Q为景区内一景点,A为道路上一游客休息区,已知,(百米),Q到直线,的距离分别为3(百米),(百米),现新修一条自A经过Q的有轨观光直路并延伸至道路于点B,并在B处修建一游客休息区.
(1)求有轨观光直路的长;
(2)已知在景点Q的正北方6百米的P处有一大型组合音乐喷泉,喷泉表演一次的时长为9分钟,表演时,喷泉喷洒区域以P为圆心,r为半径变化,且t分钟时,(百米)(,).当喷泉表演开始时,一观光车S(大小忽略不计)正从休息区B沿(1)中的轨道以(百米/分钟)的速度开往休息区A,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左、右焦点分别为、,过右焦点的直线:与椭圆交于,两点.当时,是椭圆的下顶点,且的周长为6.
(1)求椭圆的方程;
(2)设椭圆的右顶点为,直线、分别与直线交于、点,证明:当变化时,以线段为直径的圆与直线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动、活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取名,每名用户赠送元的红包,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例);
(1)根据上面的数据求出关于的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为.已知更换一次该型号手机屏幕的费用为元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于万元,能否把保费定为5元?
x | 10 | 20 | 30 | 40 | 50 |
y | 0.79 | 0.59 | 0.38 | 0.23 | 0.01 |
参考公式:回归方程中斜率和截距的最小二乘估计分别为,
,
参考数据:表中的5个值从左到右分别记为,相应的值分别记为,经计算有,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的左、右焦点,离心率为,是平面内两点,满足,线段的中点在椭圆上,周长为12.
(1)求椭圆的方程;
(2)若过的直线与椭圆交于,求(其中为坐标原点)的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com