【题目】已知,,.
(1)解关于的方程;
(2)设,时,对任意,总有成立,求的取值范围.
【答案】(1)见解析;(2).
【解析】
(1)利用换元法得到含参数的一元二次方程,再对分类讨论,分析方程解的情况;
(2)题中任意,总有可以看作区间内函数最大值与函数最小值的差值问题,然后对参数进行分类讨论,确定函数在区间上的单调性,从而确定函数在区间上的最值,再根据不等式求出参数的取值范围.
(1)由题知,
代入有,
整理得,
令,,
即,,
当时,方程无解,
当时,方程有一个解,解得,
当时,方程有两个解,
,
,
当时,方程仅有一个根,
;
(2),代入,
有,
令,,设,
①当时,易知函数在区间单调递增,
又因为,
即,
解得,舍去,
②当时,函数在处取最小值,
当时,,
即函数在区间单调递增,
又因为,
即,
解得,
所以,
当时,,
即函数在区间单调递减,
在区间单调递增,
又因为,
即,
因为当时,恒成立,
所以,
综上.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P为椭圆C上一点,且PF2垂直于x轴,连结PF1并延长交椭圆于另一点Q,设=λ.
(1)若点P的坐标为(2,3),求椭圆C的方程及λ的值;
(2)若4≤λ≤5,求椭圆C的离心率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点的直线与中心在原点,焦点在轴上且离心率为的椭圆相交于、两点,直线过线段的中点,同时椭圆上存在一点与右焦点关于直线对称.
(1)求直线的方程;
(2)求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an=logn+1(n+2)(n∈N*)定义使a1a2…ak为整数的数k叫做企盼数,则区间[1,2019]内所有的企盼数的和是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中.是自然对数的底数.
(1)若曲线在处的切线方程为.求实数的值;
(2)① 若时,函数既有极大值,又有极小值,求实数的取值范围;
② 若,.若对一切正实数恒成立,求实数的最大值(用表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个正方形花圃被分成5份.
(1)若给这5个部分种植花,要求相邻两部分种植不同颜色的花,己知现有红、黄、蓝、绿4种颜色不同的花,求有多少种不同的种植方法?
(2)若向这5个部分放入7个不同的盆栽,要求每个部分都有盆栽,问有多少种不同的放法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD为正三角形.且PA=2.
(1)证明:平面PAB⊥平面PBC;
(2)若点P到底面ABCD的距离为2,E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】考虑某长方体的三个两两相邻的面上的三条对角线及体对角线(共四条线段),则正确的命题是( )
A. 必有某三条线段不能组成一个三角形的三边
B. 任何三条线段都可组成三角形,其每个内角都是锐角
C. 任何三条线段都可组成三角形,其中必有一个是钝角三角形
D. 任何三条线段都可组成三角形,其形状是“锐角的”或是“非锐角的”,随长方体的长、宽、高而变化,不能确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com