精英家教网 > 高中数学 > 题目详情

已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是

[  ]

A.b∥α

B.bα

C.b与α相交

D.以上都有可能

答案:D
解析:

a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足.
(1)求线段PP′中点M的轨迹C的方程.
(2)过点Q(一2,0)作直线l与曲线C交于A、B两点,设N是过点(-
4
17
,0),且以言
a
=(0,1)
为方向向量的直线上一动点,满足
ON
=
OA
+
OB
(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线Z的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,椭圆C上的点到左焦点F距离的最小值与最大值之积为1.
(1)求椭圆C的方程;
(2)直线l过椭圆C内一点M(m,0),与椭圆C交于P、Q两点.对给定的m值,若存在直线l及直线母x=-2上的点N,使得△PNQ的垂心恰为点F,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知圆M:(x+1)2+y2=8及定点N(1,0),点P是圆M上一动点,点Q为PN的中点,PM上一点G满足
GQ
NP
=0

(1)求点G的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于A、B两点,E(0,1),是否存在直线l,使得点N恰为△ABE的垂心?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为FlvF2,离心率e=
2
2
,A为右顶点,K为右准线与x轴的交点,且
AF2
AK
=4-3
2

(1)求椭圆的标准方程;
(2)设椭圆的上顶点为B,问是否存在直线l,使直线l交椭圆于C,D两点,且椭圆的左焦点F1恰为△BCD的垂心?若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届河南省高二下学期第一次阶段测试文科数学试卷(解析版) 题型:解答题

已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C.

(1)求曲线C的方程

(2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足

(O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.

 

查看答案和解析>>

同步练习册答案