精英家教网 > 高中数学 > 题目详情

【题目】已知函数相邻两对称轴间的距离为,若将的图象先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.

1)求的解析式,并求的对称中心;

2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.

【答案】1;对称中心为:2

【解析】

1)由周期求得,由函数的图象变换规律可得,再根据的为奇函数求得的值,可得的解析式以及的对称中心.

2)由(1)可得,由题意可得可得关于的方程在区间上有唯一解.再利用二次函数的性质求得的范围.

解:(1)由条件得:

为奇函数,

,解得

故函数的对称中心为:

2,又有(1)知,则

的函数值从递增到,又从递减回.

,则

由原命题得:上仅有一个实根.

则需

解得:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的奇偶性,并说明理由;

(2)已知上单调递减,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】, ,的内心,,其中,动点的轨迹所覆盖的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把某校名学生的一次考试成绩(单位:)分成5组得到的频率分布直方图如图所示,其中落在内的频数为180.

1)请根据图中所给数据,求出本次考试成绩的中位数(保留一位小数)

2)从这5组中按分层抽样的方法选取40名学生的成绩作为一个样本,在内的样本中,再随机抽取两名学生的成绩,求所抽取两名学生成绩的平均分不低于70分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取名同学(男),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

几何题

代数题

总计

男同学

女同学

总计

(1)能否据此判断有的把握认为视觉和空间能力与性别有关?

(2)经过多次测试后,甲每次解答一道几何题所用的时间在分钟,乙每次解答一道几何题所用的时间在分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.

(3)现从选择做几何的名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入冬天,大气流动性变差,容易形成雾握天气,从而影响空气质量.某城市环保部门试图探究车流量与空气质量的相关性,以确定是否对车辆实施限行.为此,环保部门采集到该城市过去一周内某时段车流量与空气质量指数的数据如下表:

时间

周一

周二

周三

周四

周五

周六

周日

车流量(x万辆)

10

9

9.5

10.5

11

8

8.5

空气质量指数y

78

76

77

79

80

73

75

(1)根据表中周一到周五的数据,求关于的线性回归方程;

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?

附:回归方程中斜率和截距最小二乘估计公式分别为:

其中:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①20202月通过考试进入国家数学奥赛集训队(集训队从201910月省数学竞赛一等奖中选拔);②20203月自主招生考试通过并且达到20206月高考重点分数线,③20206月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表

省数学竞赛一等奖

自主招生通过

高考达重点线

高考达该校分数线

0.5

0.6

0.9

0.7

若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)

1)求该学生参加自主招生考试的概率;

2)求该学生参加考试的次数的分布列及数学期望;

查看答案和解析>>

同步练习册答案