精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥中,底面的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

【答案】(1)见解析; (2).

【解析】

(1)在中,由余弦定理可解得:

所以,所以是直角三角形,

为等边三角形,所以,所以,即可证明平面

(2):由(1)可知,以点为原点,以,所在直线分别为轴,轴,轴建立空间直角坐标系,利用空间向量可求直线与平面所成角的正弦值.

(1)证明:因为

所以

中,

由余弦定理可得:

解得:

所以,所以是直角三角形,

的中点,所以

,所以为等边三角形,

所以,所以

平面平面

所以平面.

(2)解:由(1)可知,以点为原点,以,所在直线分别为轴,轴,轴建立空间直角坐标系,则.

所以.

为平面的法向量,则,即

,则,即平面的一个法向量为

所以

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)过点P(2,1),且离心率为
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足 ,直线PM、PN分别交椭圆于A,B.
(i)求证:直线AB过定点,并求出定点的坐标;
(ii)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC的对边分别为abc,2acosC=bcosC+ccosB

(1)求角C的大小;

(2)若c=a2+b2=10,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项科研活动共进行了5次试验,其数据如表所示:

特征量

第1次

第2次

第3次

第4次

第5次

x

555

559

551

563

552

y

601

605

597

599

598

(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(Ⅱ)求特征量y关于x的线性回归方程 ;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为 (α为参数),直线l的参数方程为 (t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2 ,θ),其中θ∈( ,π)
(Ⅰ)求θ的值;
(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a>0),且f(1)=2;
(1)求a和f(x)的单调区间;
(2)f(x+1)﹣f(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,不等式组 (r为常数)表示的平面区域的面积为π,若x,y满足上述约束条件,则z= 的最小值为(
A.﹣1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的离心率为,且过点过椭圆的左顶点A作直线M为直线上的动点B为椭圆右顶点,直线BM交椭圆CP

(1)求椭圆C的方程;

(2)求证:

(3)试问是否为定值若是定值,请求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.

(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.

查看答案和解析>>

同步练习册答案