精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(I)求的单调区间;

(II)讨论上的零点个数.

【答案】(1)见解析(2)见解析

【解析】试题(1)先求导数,再根据a的正负确定导函数零点,根据零点情况确定导函数符号,最后根据导函数符号确定单调区间,(2)先分离:再利用导数研究单调性,根据单调性确定函数值域,结合图像确定零点个数与a的关系.

试题解析:(I)

,则恒成立,

所以的单调递增区间为,无单调递减区间.

,令,令

所以的单调递增区间为,单调递减区间为

(II)令,又,所以 .

因为,所以,可知,若,则无零点;

,令

,当,

所以上单调递增,在上单调递减,

所以

又因为当时,,当时,

所以,若,则1个零点,

,则2个零点;若,则没有零点.

综上所述,当时,无零点;当时,1个零点;当时,2个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若满足上奇函数且上偶函数,求的值;

(2)若函数满足恒成立,函数,求证:函数是周期函数,并写出的一个正周期;

(3)对于函数,若恒成立,则称函数是“广义周期函数”, 是其一个广义周期,若二次函数的广义周期为不恒成立),试利用广义周期函数定义证明:对任意的成立的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)求函数的零点个数;

3)当时,求证不等式解集为空集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张军自主创业,在网上经营一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120/千克、80/千克、70/千克、40元千克,为增加销量,张军对这四种干果进行促销:一次购买干果的总价达到150元,顾客就少付x(2xZ).每笔订单顾客网上支付成功后,张军会得到支付款的80%.

①若顾客一次购买松子和腰果各1千克,需要支付180元,则x=________

②在促销活动中,为保证张军每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当a为何值时,x轴为曲线的切线;

(2)设函数,讨论在区间(0,1)上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,为等边三角形,的中点.

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论极值点的个数;

(2)若的一个极值点,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数fx)是奇函数,且满足f3-x=fx),f-1=3,数列{an}满足a1=1an=nan+1-an)(nN*),则fa36+fa37=(  )

A. B. C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线交于两点,且与轴交于点.

1)若直线的斜率,且,求的值;

2)若轴上是否存在点,总有?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案