精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,点A(x,y)与点B关于x轴对称,
j
=(0,1)
,则满足不等式
OA
2
+
j
AB
≤0
的点A的集合用阴影表示(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网
分析:先求出点B的坐标,并用点A的坐标表示出
OA
2
+
j
AB
,最后把原不等式转化为x2+(y-1)2≤1,找出点所在的位置即可求出结论.
解答:解:由题得:B(-x,y),
AB
=(0,2y).
OA
2
+
j
AB
=x2+y2+2y=x2+(y-1)2-1.
∴不等式
OA
2
+
j
AB
≤0
转化为x2+(y-1)2≤1.
故满足要求的点在以(o,1)为圆心,1为半径的圆上以及圆的内部.
故选C.
点评:本题主要考查向量的基本运算以及计算能力和转化思想的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,点A(2,1),点P在区域
y≤x
x+y≥2
y>3x-6
内运动,则
OA
OP
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,点A(2,0),B(0,2),C(cosα,sinα),且0<α<π.
(Ⅰ)若
AC
BC
=
3
5
,求tanα的值;
(Ⅱ)若|
OA
+
OC
|=
7
,求
OB
OC
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天河区三模)已知O为坐标原点,点M坐标为(-2,1),在平面区域
x≥0
x+y≤2
y≥0
上取一点N,则使|MN|为最小值时点N的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,点P(x,y),其中x,y满足
x+2y-5≤0
x+2y-3≥0
x≥1
y≥0
,则直线OP的斜率的最大值为
2
2

查看答案和解析>>

同步练习册答案