精英家教网 > 高中数学 > 题目详情
3.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),曲线C2的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=3+tsinα}\end{array}\right.$,t为参数,0≤α<π;射线θ=φ,θ=φ+$\frac{π}{4}$,θ=φ-$\frac{π}{4}$,θ=φ+$\frac{π}{2}$与曲线C1分别交异于极点O的四点A,B,C,D.
(1)若曲线C1关于曲线C2对称,求α的值,并把曲线C1和C2化成直角坐标方程;
(2)求|OA|•|OC|+|OB|•|OD|的值.

分析 (1)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可把曲线C1的极坐标方程化为直角坐标方程,由于曲线C1关于曲线C2对称,可得圆心在C2上,即可解出.
(2)由已知可得|OA|=2$\sqrt{2}$sin(φ+$\frac{π}{4}$),|OB|=2$\sqrt{2}$sin(φ+$\frac{π}{2}$),|OC|=2$\sqrt{2}$sinφ,|OD|=2$\sqrt{2}$sin(φ+$\frac{3π}{4}$),化简整理即可得出.

解答 解:(1)曲线C1的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),展开为${ρ}^{2}=2\sqrt{2}×\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ),可得直角坐标方程:x2+y2=2x+2y,化为(x-1)2+(y-1)2=2,
∵曲线C1关于曲线C2对称,∴圆心(1,1)在C2上,∴$\left\{\begin{array}{l}{1=-1+tcosα}\\{1=3+tsinα}\end{array}\right.$,化为tanα=-1,解得α=$\frac{3π}{4}$.
∴C2:为y-3=-1(x+1),化为x+y-2=0.
(2)|OA|=2$\sqrt{2}$sin(φ+$\frac{π}{4}$),|OB|=2$\sqrt{2}$sin(φ+$\frac{π}{2}$),|OC|=2$\sqrt{2}$sinφ,|OD|=2$\sqrt{2}$sin(φ+$\frac{3π}{4}$),
∴|OA|•|OC|+|OB|•|OD|=8sinφsin(φ+$\frac{π}{4}$)+8cosφsin(φ+$\frac{3π}{4}$)=8sinφsin(φ+$\frac{π}{4}$)+8cosφcos(φ+$\frac{π}{4}$)=8cos$\frac{π}{4}$=4$\sqrt{2}$.

点评 本题考查了极坐标化为直角坐标方程的方法、三角函数化简求值、直线的参数方程应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.数列{an}的前n项和sn=2an+(-1)n(n∈N*).
(1)写出数列{an}的前三项a1,a2,a3
(2)求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线x-y+2=0与圆$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数)的位置关系是(  )
A.相离B.相切
C.直线过圆心D.相交但直线不过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.将下列曲线的极坐标方程化为直角坐标方程,并说明曲线的形状,
(1)ρ=4sinθ;
(2)(ρ-1)(θ-π)=0;
(3)ρcos(θ-$\frac{π}{3}$)=1;
(4)$θ=\frac{π}{4}$(ρ∈R);
(5)ρcosθ=2sin2θ;
(6)ρ2cosθ-ρ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的函数f(x)满足:f(2)=1,且对于任意的x∈R,都有$f'(x)<\frac{1}{10}$,则不等式$f({x^2})>\frac{{{x^2}+8}}{10}$的解集为(-$\sqrt{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线L:ρcosθ-$\sqrt{3}$ρsinθ+1=0,曲线C的参数方程为$\left\{\begin{array}{l}x=5+cosα\\ y=sinα\end{array}\right.$(α为参数).
(Ⅰ)求直线L和曲线C的普通方程;
(Ⅱ)在曲线C上求一点Q,使得Q到直线L的距离最小,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若定义域为R的奇函数f(x)=$\frac{x+n}{{{x^2}+m}}$在区间$(1,\frac{3}{2}]$上没有最小值,则实数m的取值范围是(  )
A.(0,2]B.$[\frac{3}{2},2]$C.$[\frac{3}{2},+∞)$D.$(\frac{3}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设△ABC的三边长分别为a,b,c,已知a=3,b=$\sqrt{3}$,B=30°.
(1)求A;                 
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC的三边长分别为AB=5,BC=4,AC=3,M是AB边上的点,P是平面ABC外一点,给出下列四个命题:
①若PA⊥平面ABC,则三棱锥P-ABC的四个面都是直角三角形;
②若PM⊥平面ABC,且M是AB边的中点,则有PA=PB=PC;
③若PC=5,PC⊥平面ABC,则△PCM面积的最小值为$\frac{15}{2}$;
④若PB=5,PB⊥平面ABC,则三棱锥P-ABC的外接球体积为$\frac{125\sqrt{2}π}{3}$;
其中正确命题是①②④.

查看答案和解析>>

同步练习册答案