分析 (1)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可把曲线C1的极坐标方程化为直角坐标方程,由于曲线C1关于曲线C2对称,可得圆心在C2上,即可解出.
(2)由已知可得|OA|=2$\sqrt{2}$sin(φ+$\frac{π}{4}$),|OB|=2$\sqrt{2}$sin(φ+$\frac{π}{2}$),|OC|=2$\sqrt{2}$sinφ,|OD|=2$\sqrt{2}$sin(φ+$\frac{3π}{4}$),化简整理即可得出.
解答 解:(1)曲线C1的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),展开为${ρ}^{2}=2\sqrt{2}×\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ),可得直角坐标方程:x2+y2=2x+2y,化为(x-1)2+(y-1)2=2,
∵曲线C1关于曲线C2对称,∴圆心(1,1)在C2上,∴$\left\{\begin{array}{l}{1=-1+tcosα}\\{1=3+tsinα}\end{array}\right.$,化为tanα=-1,解得α=$\frac{3π}{4}$.
∴C2:为y-3=-1(x+1),化为x+y-2=0.
(2)|OA|=2$\sqrt{2}$sin(φ+$\frac{π}{4}$),|OB|=2$\sqrt{2}$sin(φ+$\frac{π}{2}$),|OC|=2$\sqrt{2}$sinφ,|OD|=2$\sqrt{2}$sin(φ+$\frac{3π}{4}$),
∴|OA|•|OC|+|OB|•|OD|=8sinφsin(φ+$\frac{π}{4}$)+8cosφsin(φ+$\frac{3π}{4}$)=8sinφsin(φ+$\frac{π}{4}$)+8cosφcos(φ+$\frac{π}{4}$)=8cos$\frac{π}{4}$=4$\sqrt{2}$.
点评 本题考查了极坐标化为直角坐标方程的方法、三角函数化简求值、直线的参数方程应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 相离 | B. | 相切 | ||
C. | 直线过圆心 | D. | 相交但直线不过圆心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,2] | B. | $[\frac{3}{2},2]$ | C. | $[\frac{3}{2},+∞)$ | D. | $(\frac{3}{2},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com