(本小题满分14分)
已知定义域为[0, 1]的函数f(x)同时满足:
①对于任意的x[0, 1],总有f(x)≥0;
②f(1)=1;
③若0≤x1≤1, 0≤x2≤1, x1+x2≤1, 则有f (x1+x2) ≥ f (x1)+f (x2).
(1)试求f(0)的值;
(2)试求函数f(x)的最大值;
(3)试证明:当x, nN+时,f(x)<2x.
(1)f(0)=0
(2)f(x)取最大值1.
(3)略
【解析】(1)令x1=x2=0,依条件(3)可得f(0+0)≥2f(0),即f(0)≤0
又由条件(1)得f(0)≥0 故f(0)=0 …………3分
(2)任取0≤x1<x2≤1可知x2-x1(0,1],则
f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)≥f(x1)
于是当0≤x≤1时,有f(x)≤f(1)=1因此当x=1时,f(x)取最大值1.…………8分
(3)证明:先用数学归纳法证明:当x(nN+)时,f(x)≤
10当n=1时,x,f(x)≤f(1)=1=,不等式成立.
当n=2时,x,<2x≤1,f(2x)≤1,f(2x)≥f(x)+f(x)=2f(x)
∴f(x)≤f(2x)≤ 不等式成立.
20假设当n=k(kN+,k≥2)时,不等式成立,即x时,f(x)≤
则当n=k+1时,x,记t=2x,则t=2x, ∴f(t)≤
而f(t)=f(2x)≥2f(x),∴f(x)≤f(2x)=f(t)≤
因此当n=k+1时不等式也成立.
由10,20知,当x(nN+)时,f(x)≤
又当x(nN+)时,2x>, 此时f(x)<2x.
综上所述:当x(nN+)时,有f(x)<2x. ………… 14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com