精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

    已知定义域为[0, 1]的函数fx)同时满足:

    ①对于任意的x[0, 1],总有fx)≥0;

    ②f(1)=1; 

    ③若0≤x1≤1, 0≤x2≤1, x1x2≤1, 则有f x1x2) ≥ f x1)+f x2).

   (1)试求f(0)的值;

   (2)试求函数fx)的最大值;

(3)试证明:当x, nN时,fx)<2x

 

【答案】

(1)f(0)=0

(2)fx)取最大值1.

(3)略

【解析】(1)令x1x2=0,依条件(3)可得f(0+0)≥2f(0),即f(0)≤0

又由条件(1)得f(0)≥0 故f(0)=0                               …………3分

(2)任取0≤x1<x2≤1可知x2x1(0,1],则              

fx2)=f[(x2x1)+x1]≥fx2x1)+fx1)≥fx1

于是当0≤x≤1时,有fx)≤f(1)=1因此当x=1时,fx)取最大值1.…………8分

(3)证明:先用数学归纳法证明:当xnN)时,fx)≤

10n=1时,xfx)≤f(1)=1=,不等式成立.

n=2时,x,<2x≤1,f(2x)≤1,f(2x)≥fx)+fx)=2fx

fx)≤f(2x)≤ 不等式成立.

20假设当nkkN,k≥2)时,不等式成立,即x时,fx)≤

则当nk+1时,x,记t=2x,则t=2x, ∴ft)≤

ft)=f(2x)≥2fx),∴fx)≤f(2x)=ft)≤

因此当nk+1时不等式也成立.

由10,20知,当xnN)时,fx)≤

又当xnN)时,2x>, 此时fx)<2x

综上所述:当xnN)时,有fx)<2x.  ………… 14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案