【题目】某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:
单价x/元 | 18 | 19 | 20 | 21 | 22 |
销量y/册 | 61 | 56 | 50 | 48 | 45 |
(1)求试销天的销量的方差和关于的回归直线方程;
附: .
(2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?
科目:高中数学 来源: 题型:
【题目】已知点为抛物线: 的焦点,点是准线上的动点,直线交抛物线于两点,若点的纵坐标为,点为准线与轴的交点.
(1)求直线的方程;
(2)求的面积范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆左右焦点为,左顶点为A(-2.0),上顶点为B,且∠=.
(1)求椭圆C的方程;
(2)探究轴上是否存在一定点P,过点P的任意直线与椭圆交于M、N不同的两点,M、N不与点A重合,使得 为定值,若存在,求出点P;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为抛物线: 的焦点,过点作两条互相垂直的直线,直线交于不同的两点,直线交于不同的两点,记直线的斜率为.
(1)求的取值范围;
(2)设线段的中点分别为点,求证: 为钝角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,椭圆关于坐标轴对称,以坐标原点为极点,以轴的正半轴为极轴建立极坐标系, , 为椭圆上两点.
(1)求直线的直角坐标方程与椭圆的参数方程;
(2)若点在椭圆上,且点在第一象限内,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若函数的定义域为,且存在非零常数,对任意 , 恒成立,则称为线周期函数, 为的线周期.
(1)下列函数①,②,③(其中表示不超过x的最大整数),是线周期函数的是 (直接填写序号);
(2)若为线周期函数,其线周期为,求证: 为周期函数;
(3)若为线周期函数,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点,以线段为直径的圆内切于圆,记点的轨迹为.
(1)求曲线的方程;
(2)若为曲线上的两点,记, ,且,试问的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为,动圆过点和点.记两个圆的交点为、.
(1)如果直线的方程为,求圆的方程;
(2)当动圆的面积最小时,求两个圆心距离的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com