精英家教网 > 高中数学 > 题目详情
已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0。
(Ⅰ)求证:对m∈R,直线l与圆C总有两个不同交点;
(Ⅱ)设l与圆C交与不同的两点A、B,求弦AB的中点M的轨迹方程;
(Ⅲ)若定点P(1,1)分弦AB为,求此时直线l的方程。
(Ⅰ)证明:圆C:的圆心为C(0,1),半径为
∴圆心C到直线:mx-y+1-m=0的距离
∴直线与圆C相交,即直线与圆C总有两个不同交点。
(Ⅱ)解:当M与P不重合时,连结CM、CP,则CM⊥MP,

,则
化简,得
当M与P重合时,x=1,y=1也满足上式,
故弦AB中点的轨迹方程是
(Ⅲ)解:设
,得
,化简得,                                            ①
又由,消去y,得, (*)
,                                                                              ②
由①②,解得
代入(*)式,解得
∴直线的方程为x-y=0或x+y-2=0。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:直线l恒过定点;
(2)设l与圆交于A、B两点,若|AB|=
17
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-3)2=4,一动直线l过A (-1,O)与圆C相交于P、Q两点,M是PQ中点,l与直线x+3y+6=0相交于N,则|AM|•|AN|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-2)2=1
(1)求与圆C相切且在坐标轴上截距相等的直线方程;
(2)和圆C外切且和直线y=1相切的动圆圆心轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,
(1)求证对m∈R,直线l和圆C总相交;
(2)设直线l和圆C交于A、B两点,当|AB|取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:对m∈R,直线l与C总有两个不同的交点;
(2)设l与C交于A、B两点,若|AB|=
17
,求l的方程;
(3)设l与C交于A、B两点且kOA+kOB=2,求直线l的方程.

查看答案和解析>>

同步练习册答案