精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为的函数

(1)设,求的单调区间;

(2)设导数,

(i)证明:当时,

(ii)设关于的方程的根为,求证:

【答案】(1)当为奇数时的增区间为,减区间为;当为偶数时的增区间为,减区间为

(2)(i)证明见解析,(ii)证明见解析。

【解析】

(1)对,求导可得,分当为大于1的奇数,和为偶数时两种情况讨论可得的单调区间;

(2)(i)设,求导得,根据研究即可得到所证结论;

(ii),原方程化为解得,因为,所以;作差得,,由(i)知,可得,所以,即可得证.

(1)

(a)当为大于1的奇数时,是偶数,

时,,当

的增区间为,减区间为

为偶数时,是奇数,由于,所以

时,,当

的增区间为,减区间为

综上,当为奇数时的增区间为,减区间为

为偶数时的增区间为,减区间为

(2)(i)证明:设,则

因为,故是增函数,

从而,由于

所以

所以是增函数,,即

(ii),原方程化为

解得,因为,所以

作差得,

由(i)知,当时,

,故有,所以

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数图象上两相邻对称轴之间的距离为_______________

)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;

)若动直线的图象分别交于两点,求线段长度的最大值及此时的值.

注:如果选择多个条件分别解答,按第一个解答计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某大河的一段支流,岸线近似满足宽度为7为河中的一个半径为2的小岛,小镇位于岸线上,且满足岸线现计划建造一条自小镇经小岛至对岸的通道(图中粗线部分折线段,右侧),为保护小岛,段设计成与圆相切,设

(1)试将通道的长表示成的函数,并指出其定义域.

(2)求通道的最短长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥的底面正方形边长是3是在底面上的射影,上的一点,过且与都平行的截面为五边形

1)在图中作出截面,并写出作图过程;

2)求该截面面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是.

1)求的值;

2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为,第二次取出的小球标号为.

①记为事件,求事件的概率;

②在区间内任取2个实数,求事件恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

(1)若极大值;

(2)若无零点,求实数的取值范围;

(3)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=2cos(2x+)的图象向左平移个单位长度,得到函数y=fx)的图象.

(1)求fx)的单调递增区间;

(2)求fx)在[0,]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年春节,各地的餐馆都出现了用餐需预定的现象,致使一些人在没有预定的情况下难以找到用餐的餐馆,针对这种现象,专家对人们的用餐地点及性别作出调查,得到的情况如下表所示:

在家用餐

在餐馆用餐

总计

男性

30

女性

40

总计

50

100

1)完成上述列联表;

2)根据表中的数据,试通过计算判断是否有的把握说明用餐地点与性别有关?

参考公式及数据:,其中.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了改善市民的生活环境,长沙某大型工业城市决定对长沙市的1万家中小型化工企业进行污染情况摸排,并出台相应的整治措施.通过对这些企业的排污口水质,周边空气质量等的检验,把污染情况综合折算成标准分100分,发现长沙市的这些化工企业污染情况标准分基本服从正态分布N(50,162),分值越低,说明污染越严重;如果分值在[50,60]内,可以认为该企业治污水平基本达标.

如图为长沙市的某工业区所有被调査的化工企业的污染情况标准分的频率分布直方图,请计算这个工业区被调査的化工企业的污染情况标准分的平均值,并判断该工业区的化工企业的治污平均值水平是否基本达标;

Ⅱ)大量调査表明,如果污染企业继续生产,那么标准分低于18分的化工企业每月对周边造成的直接损失约为10万元,标准分在[18,34)内的化工企业每月对周边造成的直接损失约为4万元.长沙市决定关停80%的标准分低于18分的化工企业和60%的标准分在[18,34)内的化工企业,每月可减少的直接损失约有多少?

(附:若随机变量,则

查看答案和解析>>

同步练习册答案