精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C).若四点中有且仅有三点在椭面C上.

1)求椭圆C的标准方程;

2)设O为坐标原点,F为椭圆C的右焦点,过点F的直线l分别与椭圆C交于MN两点,,求证:直线关于x轴对称.

【答案】1;(2)详见解析.

【解析】

1)根据两点关于原点对称,得到BP均在椭圆上,再由点与点不关于x轴对称,得到在椭圆上求解.

2)当直线lx轴时,显然直线关于x轴对称,当直线l不与x轴重合时,设l,由联立,将韦达定理代入求解.

1)因为两点关于原点对称,

BP均在椭圆上,

而点与点不关于x轴对称,

Q不在椭圆上,

因此

解得

故椭圆C的标准方程为

2)由(1)知,则

当直线lx轴时,显然直线关于x轴对称;

当直线l不与x轴重合时,设l

消去x整理得

所以

因为

故直线关于x轴对称

综上可知,直线关于x轴对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为万元/辆和万元/辆的两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:

使用寿命年数

5

6

7

8

总计

型出租车()

10

20

45

25

100

型出租车()

15

35

40

10

100

1)填写下表,并判断是否有的把握认为出租车的使用寿命年数与汽车车型有关?

使用寿命不高于

使用寿命不低于

总计

总计

2)从的车型中各随机抽取车,以表示这车中使用寿命不低于年的车数,求的分布列和数学期望;

3)根据公司要求,采购成本由出租公司负责,平均每辆出租车每年上交公司万元,其余维修和保险等费用自理.假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为的中点,,将沿折起,得到四棱锥的中点.

1)证明:平面

2)当正视图方向与向量的方向相同时,此时的正视图的面积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是菱形, .

(1)求证:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点O为坐标原点,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,离心率为,点I,J分别是椭圆C的右顶点、上顶点,IOJ的边IJ上的中线长为

(1)求椭圆C的标准方程;

(2)过点H(-2,0)的直线交椭圆C于A,B两点,若AF1⊥BF1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知2a2bcosC+csinB

(Ⅰ)求tanB

(Ⅱ)若CABC的面积为6,求BC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论(素数即质数,).根据欧拉得出的结论,如下流程图中若输入的值为,则输出的值应属于区间( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=axsinxaR.

1)当时,fx0恒成立,求正实数a的取值范围;

2)当a≥1时,探索函数Fxfx)﹣cosx+a1在(0π)上的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,港口A在港口O的正东100海里处,在北偏东方向有条直线航道OD,航道和正东方向之间有一片以B为圆心,半径为海里的圆形暗礁群(在这片海域行船有触礁危险),其中OB海里,tanAOB,cosAOD,现一艘科考船以海里/小时的速度从O出发沿OD方向行驶,经过2个小时后,一艘快艇以50海里/小时的速度准备从港口A出发,并沿直线方向行驶与科考船恰好相遇.

1)若快艇立即出发,判断快艇是否有触礁的危险,并说明理由;

2)在无触礁危险的情况下,若快艇再等x小时出发,求x的最小值.

查看答案和解析>>

同步练习册答案