精英家教网 > 高中数学 > 题目详情
14.设直线l为抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=4,$\overrightarrow{CB}$=2$\overrightarrow{BF}$,则p=2.

分析 分别过A、B作准线的垂线,利用抛物线定义将A、B到焦点的距离转化为到准线的距离,结合已知比例关系,在直角三角形ADC中求线段PF长度即可得p值,进而可得方程.

解答 解:如图过A作AD垂直于抛物线的准线,垂足为D,
过B作BE垂直于抛物线的准线,垂足为E,P为准线与x轴的焦点,
由抛物线的定义,|BF|=|BE|,|AF|=|AD|=4,
∵|BC|=2|BF|,∴|BC|=2|BE|,∴∠DCA=30°
∴|AC|=2|AD|=8,∴|CF|=8-4=4,
∴|PF|=$\frac{1}{2}$|CF|═2,即p=|PF|=2,
故答案为:2

点评 本题考查抛物线的定义及其应用,抛物线的几何性质,过焦点的弦的弦长关系,转化化归的思想方法,属中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设集合A={x|x2-3x+a=0},B={x|x2+b=0},若A∩B={2},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-1,1),$\overrightarrow{c}$=(4,2),若$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,λ、μ∈R,则λ+μ=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,Sn是该数列的前n项和,已知a4+a8=4,则S11+a6=(  )
A.12B.16C.24D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在三棱锥D-ABC中,AB=BC=CD=2,AD=2$\sqrt{3}$,∠ABC=90°,平面ACD⊥平面ABC.
(1)求证:AB⊥BD;
(2)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=5,则△AOF的面积为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,正方体ABCD-A′B′C′D′的棱长为1,E、F分别是棱是AA′,CC′的中点,过直线EF的平面分别与棱BB′,DD′交于M,N,设BM=x,x∈[0,1],给出以下四种说法:
(1)平面MENF⊥平面BDD′B′;
(2)当且仅当x=$\frac{1}{2}$时,四边形MENF的面积最小;
(3)四边形MENF周长L=f(x),x∈[0,1]是单调函数;
(4)四棱锥C′-MENF的体积V=h(x)为常函数,以上说法中正确的为(  )
A.(2)(3)B.(1)(3)(4)C.(1)(2)(3)D.(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知不等式ax2+5x+b<0的解集为{x|-3<x<2},则不等式bx2+5x+a>0的解集为(-$\frac{1}{3}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.2+4$\sqrt{3}$B.4+4$\sqrt{3}$C.8+2$\sqrt{3}$D.6+2$\sqrt{3}$

查看答案和解析>>

同步练习册答案