精英家教网 > 高中数学 > 题目详情
17.过抛物线y2=2px(p>0)的焦点F且倾斜角为α的直线交抛物线于A、B两点,若S△ADF=4S△BOF,O为坐标原点,则sinα=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

分析 根据S△AOF=4S△BOF,得|AF|=4|BF|,$\overrightarrow{AF}=4\overrightarrow{FB}$,求得-y1=4y2,设出直线AB的方程,与抛物线方程联立消去x,利用韦达定理求出斜率,即可求出sinα.

解答 解:根据题意设点A(x1,y1),B(x2,y2).
由S△AOF=4S△BOF,得|AF|=4|BF|,$\overrightarrow{AF}=4\overrightarrow{FB}$,得$({\frac{p}{2}-{x_1},-{y_1}})=4({{x_2}-\frac{p}{2},{y_2}})$,
故-y1=4y2,即$\frac{y_1}{y_2}=-4$.
设直线AB的方程为$y=k({x-\frac{p}{2}})$.
联立$\left\{\begin{array}{l}y=k({x-\frac{p}{2}})\\{y^2}=2px\end{array}\right.$消元得ky2-2py-kp2=0.
故${y_1}+{y_2}=\frac{2p}{k}$,${y_1}{y_2}=-{p^2}$.则$\frac{{{{({{y_1}+{y_2}})}^2}}}{{{y_1}{y_2}}}=\frac{y_1}{y_2}+\frac{y_2}{y_1}+2=-4-\frac{1}{4}+2=-\frac{9}{4}$,
即$\frac{{{{({\frac{2p}{k}})}^2}}}{{-{p^2}}}=-\frac{9}{4}$,得$-\frac{4}{k^2}=-\frac{9}{4}$,解得$k=±\frac{4}{3}$.
所以$tanα=±\frac{4}{3}$.所以$sinα=\frac{4}{5}$.

点评 本题主要考查了抛物线的概念和性质,直线和抛物线的综合问题,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2$\sqrt{2}$x+tanα只有一个零点.
(1)求tanα的值;
(2)化简求值:$\frac{sin(\frac{π}{2}-α)-2sin(π+α)}{cos(-α)+sin(6π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={1,a2},B={1,2,a},若A⊆B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设ABCD-A1B1C1D1是棱长为的a的正方体,则有(  )
A.$\overrightarrow{AB}•\overrightarrow{{C_1}A}={a^2}$B.$\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}=\sqrt{2}{a^2}$C.$\overrightarrow{BC}•\overrightarrow{{A_1}D}={a^2}$D.$\overrightarrow{AB}•\overrightarrow{{C_1}{A_1}}={a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线x-y+3=0与圆O:x2+y2=r2(r>0)相交于M,N两点,若$\overrightarrow{OM}•\overrightarrow{ON}=3$,则圆的半径r=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,过右焦点F且斜率为k(k>0)的直线与椭圆C相交于A,B两点.若$\overrightarrow{AF}=2\overrightarrow{FB}$,则k=$\frac{\sqrt{23}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x|x-2|,则不等式$f({\sqrt{2}-x})<f(1)$的解集为(-1,$\sqrt{2}$-1)∪($\sqrt{2}$-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)一光线经点P(5,3)被直线l:y=3x+3反射,若反射光线经过点Q(1,1),求入射光线所在直线方程.
(2)已知正方形ABCD一边AB的方程 x+2y+3=0和中心P(1,1),求边BC和AD的方程.
(3)已知椭圆$\frac{x^2}{{3{m^2}}}+\frac{y^2}{{5{n^2}}}=1$和双曲线$\frac{x^2}{{2{m^2}}}-\frac{y^2}{{3{n^2}}}=1$有公共的焦点,那么双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于集合A、B,“A≠B”是“A∩B?A∪B”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

同步练习册答案