精英家教网 > 高中数学 > 题目详情
精英家教网设定义域为R的函数f(x)=
|x+1|,x≤0
(x-1)2,x>0

(1)在平面直角坐标系内作出该函数的图象;
(2)试找出一组b和c的值,使得关于x的方程f2(x)+b•f(x)+c=0有7个不同的实根.请说明你的理由.
分析:(1)根据分段函数图象分段画的原则,结合绝对值函数的性质及二次函数的性质,我们易画出函数的图象;
(2)本题是一个开放题,没有固定的答案,使得关于x的方程f2(x)+b•f(x)+c=0有7个不同的实根,则f(x)=1有3个解,f(x)=a∈(0,1)有四个解,只要列出b和c的值,能够满足条件即可.
解答:解:(1)如下图所示:
精英家教网
(2)b=-
3
2
,c=
1
2
满足条件,理由如下:
设f(x)=t,t2+bt+c=0,
由图象可得以上有关于t的方程必须有一解为1,
另一解在区间(0,1)中,
才会使得关于x的方程f2(x)+b•f(x)+c=0有7个解.
其中,f(x)=1有3个解,
f(x)=a∈(0,1)有四个解.
所以可令t1=1,t2=
1
2

即可得方程x2-
3
2
x+
1
2
=0
点评:本题考查的知识点是根的存在性及根的个数判断及函数的图象,其中根据绝对值函数的性质及二次函数的性质,画出函数的图象并结合函数图象即可得到答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有7个不同的实数根,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有5个不同的实数解,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
-2x+a2x+1+b
(a,b为实数)若f(x)是奇函数.
(1)求a与b的值;
(2)判断函数f(x)的单调性,并证明;
(3)证明对任何实数x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
|lg|x-1||,x≠1
0,          x=1
,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若关于x的方程f2(x)+bf(x)+c=0有三个不同的实数解x1、x2、x3,则x12+x22|x32等于(  )

查看答案和解析>>

同步练习册答案