【题目】下列函数中,既是偶函数,又在区间上单调递减的是
A. B.
C. D.
【答案】C
【解析】主要考查函数的单调性和奇偶性.
对于A,函数是偶函数,但在区间上单调递增,故不满足题意;
对于B,函数是奇函数,在R上单调递增,故不满足题意;
对于C,函数是偶函数,在区间上单调递减,故满足题意;
对于D,函数是偶函数,但在区间上有增有减,故不满足题意.故选C.
【规律总结】判断函数的奇偶性,首先求函数的定义域,若定义域不关于原点对称,则函数不具有奇偶性,此时不必求f(-x).当定义域关于原点对称时,若证明函数具有奇偶性,应运用定义,将f(-x)与f(x)进行比较,有时不易变形时,可直接计算f(-x)±f(x),判断其是否为零;若证明函数不具有奇偶性,只需找到一组相反量的函数值,不满足f(-a)=f(a)和f(-a)=-f(a)即可.
科目:高中数学 来源: 题型:
【题目】给定两个命题,命题P:函数f(x)=(a﹣1)x+3在R上是增函数; 命题q:关于x的方程x2﹣x+a=0有实数根. 若p∧q为假命题,p∨q为真命题,求实数a的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a=2,b= ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的比例 |
第1组 | [18,28) | 5 | 0.5 |
第2组 | [28,38) | 18 | a |
第3组 | [38,48) | 27 | 0.9 |
第4组 | [48,58) | x | 0.36 |
第5组 | [58,68) | 3 | 0.2 |
(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列几个命题:
①函数y= + 是偶函数,但不是奇函数;
②方程x2+(a﹣3)x+a=0的有一个正实根,一个负实根,则a<0;
③f(x)是定义在R上的奇函数,当x<0时,f(x)=2x2+x﹣1,则x≥0时,f(x)=﹣2x2+x+1
④函数y= 的值域是(﹣1, ).
其中正确命题的序号有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点为,且.
(1)求椭圆的标准方程;
(2)圆是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,,当,且满足时,求的面积的取值范围.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1: (t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4.
(1)求出曲线C2的直角坐标方程;
(2)若C1与C2相交于A,B两点,求线段AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[﹣1,1]的函数满足f(﹣x)=﹣f(x),当a,b∈[﹣1,0)时,总有 >0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com