精英家教网 > 高中数学 > 题目详情
7.一半径为R的半球挖去一圆柱后的几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{{80\sqrt{5}π}}{3}$-16πB.$\frac{{160\sqrt{5}π}}{3}$-16πC.$\frac{{80\sqrt{5}π}}{3}$-8πD.$\frac{32π}{3}$

分析 由三视图可知:半球的半径R=2$\sqrt{5}$,而圆柱的半径r=2,高为4,利用体积计算公式即可得出.

解答 解:由三视图可知:半球的半径R=2$\sqrt{5}$,半球的体积V1=$\frac{1}{2}×\frac{4}{3}π{(2\sqrt{5})}^{3}$=$\frac{80\sqrt{5}π}{3}$,
而圆柱的半径r=2,高为4,其体积V2=π×22×4=16π.
故所求的条件V=V1-V2=$\frac{80\sqrt{5}π}{3}$-16π.
故选:A.

点评 本题考查了三视图的有关知识、圆柱与球的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.证明不等式:2a+2b-4<ab,其中的a,b∈(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,(x>0)\\{2^{-x}},(x≤0)\end{array}$,则不等式f(x)>1的解集为(  )
A.(2,+∞)B.(-∞,0)C.(-∞,0)∪(2,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(t)=$\sqrt{\frac{1+t}{1-t}}$,g(x)=cosx•f(sinx)-sinx•f(cosx),x∈(π,$\frac{7π}{12}$).
(1)求函数g(x)的值域;
(2)若函数y=|cos(ωx+$\frac{π}{6}$)|•f(sin(ωx+$\frac{π}{6}$))(ω>0)在区间[$\frac{π}{3}$,π]上为增函数,求实数ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-b|,x≤1}\\{\frac{3}{x-1},x>1}\end{array}\right.$,若f(f(7))=$\sqrt{2}$,则实数b的值为0或2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在矩形ABCD中,AB=3,BC=3$\sqrt{3}$,点E、H分别是所在边靠近B、D的三等分点,现沿着EH将矩形折成直二面角,分别连接AD、AC、CB,形成如图所示的多面体.
(Ⅰ)证明:平面BCE∥平面ADH;
(Ⅱ)证明:EH⊥AC;
(Ⅲ)求二面角B-AC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=2lnx-ax在区间[2,+∞)上单调递增,则实数a的取值范围是(  )
A.[0,+∞)B.(-∞,0]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(m,a,b∈R)(  )
A.am>bm,则a>bB.a>b,则am>bmC.am2>bm2,则a>bD.a>b,则am2>bm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足不等式$\left\{\begin{array}{l}{y≥x}\\{x+y≥4}\\{x-3y+12≥0}\end{array}\right.$,则①2x-y的最大值是6;②$\sqrt{{x}^{2}+(y-1)^{2}}$最小值是$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

同步练习册答案