精英家教网 > 高中数学 > 题目详情
15.已知x>0,y>0,若不等式$\frac{3}{x}+\frac{1}{y}≥\frac{m}{x+3y}$恒成立,则m的最大值为12.

分析 题目转化为m≤($\frac{3}{x}$+$\frac{1}{y}$)(x+3y)恒成立,由基本不等式求($\frac{3}{x}$+$\frac{1}{y}$)(x+3y)的最小值可得.

解答 解:∵x>0,y>0,不等式$\frac{3}{x}+\frac{1}{y}≥\frac{m}{x+3y}$恒成立,
∴m≤($\frac{3}{x}$+$\frac{1}{y}$)(x+3y)恒成立,
又($\frac{3}{x}$+$\frac{1}{y}$)(x+3y)=6+$\frac{9y}{x}$+$\frac{x}{y}$≥6+2$\sqrt{\frac{9y}{x}•\frac{x}{y}}$=12
当且仅当$\frac{9y}{x}$=$\frac{x}{y}$即x=3y时取等号,
∴($\frac{3}{x}$+$\frac{1}{y}$)(x+3y)的最小值为12,
由恒成立可得m≤12,即m的最大值为12,
故答案为:12.

点评 本题考查基本不等式求最值,涉及恒成立问题,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.现从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\sqrt{x}$•lg(2-x)的定义域为(  )
A.[0,2)B.(0,2]C.[0,1)∪(1,2)D.(0,1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an},a1,a2025是$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的极值点,则$log_2^{\;}{a_{1013}}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某班级有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:
学生1号2号3号4号5号
投中次数67787
则投中次数的方差为S2=(  )
A.2B.0.4C.4D.0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.把0.80.7、0.80.9、1.20.8这三个数从小到大排列起来0.80.9<0.80.7<1.20.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知lg2=0.3010,由此可以推断22014是(  )位整数.
A.605B.606C.607D.608

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4ax,x≥0}\\{-{x}^{2}-3ax,x<0}\end{array}\right.$,a∈R
(Ⅰ)若关于x的方程f(x)=a-3有三个不同的根,求a的取值范围;
(Ⅱ)若对于任意的x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设0<a<1,若对任意的x∈[a,2a],都有y∈[$\frac{a}{2}$,2a]满足方程logay-logax=1,则实数a的取值范围是$[\frac{1}{2},1)$.

查看答案和解析>>

同步练习册答案