分析 求出函数的导数,结合二次函数的性质判断导函数的符号,从而求出函数的单调区间.
解答 解:函数f(x)的定义域(0,+∞),
f′(x)=$\frac{{x}^{2}-2mx+1}{{x}^{2}}$,
令h(x)=x2-2mx+1,
△=4m2-4=4(m2-1),
当△>0即m>1或m<-1时,方程h(x)=0有两个根,
设方程x2-2mx+1=0的两根是:x1,x2,且x1<x2,
解得:x1=m-$\sqrt{{m}^{2}-1}$,x2=m+$\sqrt{{m}^{2}-1}$,
∴x1+x2=m,x1•x2=1,
当△≤0时,即m∈[-1,1]时,f′(x)≥0,原函数在定义域上单调递增,
当m<-1时,△>0,两根均为负,f(x)在定义域上单调递增,
当m>1时,△>0,两根均为正,
故f(x)在区间(0,m-$\sqrt{{m}^{2}-1}$),(m+$\sqrt{{m}^{2}-1}$,+∞)递增,在(m-$\sqrt{{m}^{2}-1}$,m+$\sqrt{{m}^{2}-1}$)递减.
点评 题考查了函数的单调性问题,考查导数的应用以及分类讨论思想,是一道综合题.
科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(文)试卷(解析版) 题型:选择题
下列四个命题中错误的个数是( )
①垂直于同一条直线的两条直线相互平行;
②垂直于同一个平面的两条直线相互平行;
③垂直于同一条直线的两个平面相互平行;
④垂直于同一个平面的两个平面相互平行.
A.1 B.2 C.3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\root{4}{2}$ | B. | $\root{3}{2}$ | C. | $\root{4}{3}$ | D. | $\root{3}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com