精英家教网 > 高中数学 > 题目详情

一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分剐为1,2,3,4,从袋中任意取出3个球.
(I)求取出的3个球编号都不相同的概率;
(II)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.

解:(Ⅰ)设“取出的3个球编号都不相同”为事件A,设“取出的3个球恰有两个编号相同”为事件B,
则P(B)===
∴P(A)=1-P(B)=
答:取出的3个球编号都不相同的概率为
(Ⅱ)X的取值为1,2,3,4.
P(X=1)==
P(X=2)==
P(X=3)==
P(X=4)==
所以X的分布列为:
X1234
P
X的数学期望EX=1×+2×+3×+4×=
分析:(I)设“取出的3个球编号都不相同”为事件A,先求出其对立事件“取出的3个球恰有两个编号相同”的概率.由古典概型公式,计算可得答案.
(II)X的取值为1,2,3,4,分别求出P(X=1),P(X=3),P(X=4)的值,由此能求出X的分布列和X的数学期望.
点评:本题考查等可能事件的概率计算与排列、组合的应用以及离散型随机变量的期望与方差,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•朝阳区二模)一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球.
(Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率;
(Ⅱ)求取出的3个球中恰有2个球编号相同的概率;
(Ⅲ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分剐为1,2,3,4,从袋中任意取出3个球.
(I)求取出的3个球编号都不相同的概率;
(II)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源:婺城区模拟 题型:解答题

一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分剐为1,2,3,4,从袋中任意取出3个球.
(I)求取出的3个球编号都不相同的概率;
(II)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省金华市十校高三(下)4月联考数学试卷(理科)(解析版) 题型:解答题

一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分剐为1,2,3,4,从袋中任意取出3个球.
(I)求取出的3个球编号都不相同的概率;
(II)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案